
NON-BLIND IMAGE DECONVOLUTION USING DEEP DUAL-PATHWAY RECTIFIER
NEURAL NETWORK

Keting Zhang, Weichen Xue and Liqing Zhang*

Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
zzsnail82@gmail.com, xueweuchen@sjtu.edu.cn, zhang-lq@cs.sjtu.edu.cn

ABSTRACT

Recently deep neural networks have been successfully used
for natural image deconvolution. Whereas the existing meth-
ods usually involve an inversion of the blur followed by a de-
noising step. In this paper we propose a pure learning ap-
proach to learn a mapping from a blurred patch to a clean
patch directly with a deep dual-pathway rectifier neural net-
work. The experimental results show that our approach out-
perform the state-of-the-art methods on non-blind image de-
convolution within reasonable training time. By analyzing the
learned representations, we empirically show that our model
works by efficiently detecting the blurry input patterns and
then reconstructing the clean patch with the corresponding
dictionary atoms.

Index Terms— Non-blind image deconvolution, deep
neural network, dual-pathway architecture, rectifier activa-
tion function

1. INTRODUCTION

Digital images are often degraded when they are captured due
to the shake of the camera and the noise corruption. Image de-
convolution aims to recover the clean original image from its
degraded observation. Various effective algorithms have been
proposed, such as [1, 2, 3, 4, 5], and much progress in perfor-
mance has been made. These methods are usually based on
natural image priors and are well-engineered. Could we learn
a pure deconvolution procedure to approximate the mapping
from a blurred image to a clean image?

Recently deep neural networks have been used to learn a
denoising function from a noisy patch to a clean patch and
many network models have been proposed, including stacked
sparse autoencoder [6], convolutional neural network [7] and
plain neural network [8]. A multi-layer enormous neural net-
work has been shown to achieve state-of-the-art denoising
performance [8].

The successful applications of deep neural network to im-
age denoising inspire researchers to study its use in image de-
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convolution. However, directly applying the typical network
models mentioned above to learn a deconvolution function
was shown not to be able to yield decent performances [9, 10].
The main reason is what has been learned by these models is
still blurry and the sharp information is not preserved.

In this paper, we propose a patch-based pure learning ap-
proach for non-blind image deconvolution with a deep dual-
pathway rectifier neural network (DRNN) [11]. Compared
to the conventional neural networks, the DRNN model has
been shown to improve the efficiency of capturing informa-
tion from the noisy data. We approach image deconvolution
problem by learning the blurry patterns and the correspond-
ing dictionary atoms. We describe how to adapt DRNN mod-
el to learn a deconvolution mapping from a blurred patch to
a clean patch. The experimental results for motion deblurring
show that our approach outperforms the current state-of-the-
art methods on some standard test images both quantitatively
and visually, while the training time is reasonable. In addi-
tion, we empirically demonstrate that our model can detect
the blurry input patterns and the corresponding clean dictio-
nary efficiently, and thus succeeds in recovering the blurred
images. We provide a Matlab toolbox with the trained mod-
els to test our method1.

2. RELATED WORK

Sparse image priors are used in many image deconvolution
methods. Studies of natural image statistics have shown that
image gradients follow the heavy-tailed distributions [12].
Various approximations including hyper-Laplacian priors
[1, 2, 3] as well as Gaussian Mixture priors [4] have been
successfully applied. While Schmidt et al. [5] learn a cascade
of priors model from the image data.

Another line of research is to utilize deep neural network.
Because the typical network models do not work well for im-
age deconvolution [9, 10], the methods based on deep neural
network usually take a two-step procedure. Xu et al. [10] pro-
posed a deep convolutional network structure consisting of
two submodules corresponding to image deconvolution and
artifact removal. The first submodule uses separable kernel

1https://github.com/zzsnail/image-deconvolution-DRNN
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(a) Patch-based image deconvolution
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(b) Dual-pathway rectifier neural network

Fig. 1. Patch-based image deconvolution using dual-pathway rectifier neural network. (a) our model takes a blurred patch as
input and tries to recover its central block as output. (b) a dual-pathway rectifier network with three hidden layers. For every
neuron in hidden layers, there is an extra companion node with opposite input and output weights.

inversion as the weight initialization. Schuler et al. [9] used
a inversion of the blur in Fourier domain as the first step and
then removed the colored noise by a plain feed-forward neu-
ral network. In addition, Sun et al. [13] used convolutional
neural network to estimate the motion blur field and then re-
moved the non-uniform motion blur with Gaussian Mixture
priors.

Differences to our work: We address the uniform de-
convolution problem by detecting the blurry input pattern-
s from the degraded image and learning the corresponding
clean dictionary atoms to reconstruct the recovered image.
Our model is a pure learning approach directly using deep
dual-pathway rectifier network which is essentially a plain
feed-forward neural network.

3. OUR APPROACH

Mathematically, we consider the following image degradation
model:

X̃ = K ∗X + n (1)

where X represents the original clean image and X̃ the de-
graded image. The notation K is the known convolution k-
ernel, or referred to as a point spread function, and n models
additive white Gaussian noise.

3.1. Dual-pathway rectifier neural network

Dual-pathway rectifier neural network (DRNN) is one model
we proposed recently for image denoising [11]. The moti-
vation is to improve the efficiency of capturing information,
which is hurt by rectifier’s one-sided property.

A deep DRNN with three hidden layers is shown in Fig.
1(b). DRNN is obtained based on the plain feed-forward rec-
tifier neural network by introducing some extra hidden nodes.
For every rectifier neuron in hidden layers, one extra compan-
ion node with the opposite input and output weights is added.
In Fig. 1(b) we denote the original (upper) and companion

(lower) nodes in the i-th hidden layer by hu
i and hl

i, respec-
tively. First we add the nodes hl

1 and associate weight −W1

with their connection to input layer and weight −W2 with
connection to hu

2 . Then the nodes hl
2 are added with asso-

ciated weight −W2 to hu
1 and −W3 to hu

3 . Thus the weight
associated with the connection between hl

1 and hl
2 is W2. In

this way we get the entire DRNN model.
As shown in [11], the DRNN model is equivalent to a

feed-forward neural network with a novel activation function
g(x) defined by:

g(x) = max(0, x+ t)−max(0,−x+ t) (2)

where t is the parameter which can be learned simultaneously
with all weights and biases. Practically we use the minibatch
Limited memory BFGS (L-BFGS) method which was shown
to be able to significantly simplify and speed up training deep
models [14] to optimize all network parameters.

3.2. Adapting DRNN for patch deconvolution

We want to learn a patch-based deconvolution mapping with
DRNN. In equation (1), we make the following sparse decom-
position of blurred images:

X̃ = K ∗
(∑

i

aiϕi

)
+ n =

∑
i

ai
(
K ∗ ϕi

)
+ n (3)

where ϕi is spatial basis function in clean image (patch) space
with coefficient ai which typically has a sparse distribution
[15]. The second step is based on the distributive and asso-
ciative properties of the convolution operation. This equation
tells us a blurred image (patch) can also has a sparse represen-
tation. Compared to clean images (patches), the difference is
that the atoms in this representation space are blurry and can
be generated by convolving the clean atoms with the same
blur kernel.

In addition, the regions of blurry atoms K ∗ ϕi are larger
than clean ones ϕi, because the information spreads out to
larger area due to the convolution operation. Thus, as shown
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Blurred (kernel 1) Krishnan[2] (30.26dB) Cho[3] (30.61dB) EPLL[4] (31.37dB) Schmidt[5] (30.50dB) Ours (31.84dB)

Blurred (kernel 2) Krishnan[2] (29.36dB) Cho[3] (30.48dB) EPLL[4] (30.39dB) Schmidt[5] (30.06dB) Ours (31.09dB)

Fig. 2. Visual comparisons of cropped deconvolution results. Two blur kernels provided by [2] are shown in bottom right of the
blurred images and the Gaussian noise level is σ = 5.

in Fig. 1(a), given a blurred patch x̃ of size d̃× d̃ as input, we
try to recover its central small block of size d× d. Both sizes
should satisfy the following condition:

d̃ ≥ d+ k − 1 (4)

where k × k is the size of blur kernel K. Practically the size
d̃ can be a little bigger to obtain slight performance gain.

Thus, given many large blurred patches and the corre-
sponding small clean patches for training, we try to use deep
DRNN to learn the blurry atoms and the corresponding clean
atoms from them, respectively. And further, we learn a patch
deconvolution function.

3.3. Application to non-blind image deconvolution

Our approach consists of both training and testing phases. In
training phase, given a blur kernel K, we choose some natural
images and blur them to get the degraded images. Then we
randomly sample some blurred patches and the corresponding
clean patches whose sizes satisfy equation (4) to train a deep
DRNN model.

During the testing phase, given a blurred image, we first
pad it with mirror reflections of itself across the borders to
handle the boundary problem. Then we decompose it into
a number of overlapping blurred patches and feed them into
the trained DRNN to get the recovered patches. Finally, all
recovered patches are put at the corresponding positions and
averaged on the overlapping regions via Gaussian weighting.

4. EXPERIMENTAL STUDY

First we empirically evaluate our approach for non-blind mo-
tion deblurring. Then we discuss how our approach works by
analyzing the trained model.

Table 1. Quantitative comparisons on standard test images by
PSNR (dB) for kernel 1 (top) and kernel 2 (bottom).

image Krishnan Cho EPLL Schmidt Ours

C.man 26.79 27.27 27.19 26.98 27.73
Barbara 25.72 25.60 26.68 25.80 27.23
Bridge 24.97 25.12 24.88 25.21 25.64
Couple 27.54 27.96 28.11 27.90 28.85

Hill 28.68 28.98 28.97 28.96 29.60
House 30.11 30.82 31.28 30.69 32.07
Lena 30.26 30.61 31.37 30.50 31.84
Man 28.49 28.85 28.86 28.79 29.50

Average 27.82 28.15 28.42 28.10 29.06

image Krishnan Cho EPLL Schmidt Ours

C.man 25.95 26.54 26.07 26.32 26.92
Barbara 24.61 24.51 25.02 24.65 25.48
Bridge 24.27 24.66 24.23 24.58 24.74
Couple 26.98 27.39 27.34 27.36 27.92

Hill 28.30 28.60 28.54 28.58 28.89
House 29.36 30.48 30.39 30.06 31.09
Lena 29.98 30.33 30.97 30.17 31.39
Man 27.82 28.19 28.07 28.12 28.53

Average 27.16 27.59 27.58 27.48 28.12

4.1. Results

We use a deep DRNN with four hidden layers of size 1024, an
input layer of size 961 and an linear output layer of size 121.
This model takes a 31× 31 blurred patch as input and tries to
recover its central 11×11 block as output. We use the natural
images in the Berkeley segmentation database [16] and con-
vert them to gray-scale images to generate training samples.
Two motion blur kernels provided in [2] are tested and the
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(a) Blurry input patterns (b) Dictionary atoms (c) Dictionary convolved with the kernel

Fig. 4. Understanding the representations learned by our model for blur kernel 1. (a) the blurry input patterns learned by the
nodes in last hidden layer. (b) the corresponding clean dictionary atoms learned by the output layer. (c) the dictionary in (b)
convolved with the blur kernel. Note that they look like the input patterns in (a).
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Fig. 3. Improving average PSNR during model training.

Gaussian noise level is σ = 5. The performances of the re-
sults are evaluated using PSNR on eight standard test images.
We compare our approach to some state-of-the-art methods,
including Krishnan et al. [2], Cho et al. [3], EPLL [4] and
Schmidt et al. [5]. For all competing methods, we optimize
their hyper-parameters to obtain best possible results. The vi-
sual comparisons of the cropped results are shown in Fig. 2.
The results of Krishnan et al., Cho et al. and Schmidt et al.
contain some artifacts, while the results of EPLL [4] seem to
be overly smoothed. Our models do better in removing the ar-
tifacts as well as recovering the details. The quantitative com-
parisons are listed in Table 1. We can see that our approach
outperforms all other methods with significant improvements
for both cases.

Training deep neural networks often needs weeks of GPU
time [8, 9]. For each training epoch, we use 1.25 million train-
ing samples and the training time is about 3 hours of computa-
tion time on single Tesla K20c GPU. We carry out 50 epochs
to observe the performance evolution. As shown in Fig. 3, the
average PSNR improves very slowly after 20 epochs for both
cases. Thus about 2.5 days of training time is needed to pro-
duce decent results, which makes our model more practical.

4.2. Discussions

As suggested in [17], the multi-layer neural networks are
more efficient in signal representation than their shallow
counterparts. Thus, using activation maximization method
[18], we find the optimal input patterns (of size 31× 31) that
maximize the activations of the nodes in last hidden layers
of our model for blur kernel 1. As shown in Fig. 4(a), these
blocks depict some blurry structural information. We also
display the dictionary atoms (of size 11 × 11) learned by
these same nodes at the corresponding positions in Fig. 4(b).
These blocks represent the weights between the last hidden
layer and the output layer, which are used to reconstruct the
clean patch. We then convolve these atoms with the blur ker-
nel and get the blurred versions in Fig. 4(c). We can see that
they resemble the corresponding input patterns very much.

Based on the observation above, we can make the follow-
ing analysis. Given a blurred patch as input, our model firstly
detects the blurry input patterns from it. Then according to
the activations, our model uses the corresponding clean dic-
tionary atoms to reconstruct the deblurred patch as output.
This procedure conforms with the discussion in Section 3.2.
Thus the deep DRNN model works in image deconvolution
by efficiently learning the input patterns and the correspond-
ing reconstruction dictionary.

5. CONCLUSION

In this paper, we have proposed a pure learning approach for
non-bind image deconvolution using deep dual-pathway rec-
tifier neural network. We empirically show that our model
outperforms the state-of-the-art methods and gain some in-
sight into how our model works by analyzing the learned rep-
resentations. In the future, we will extend our model to blur
kernel estimation and non-uniform deconvolution.
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