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ABSTRACT

Hierarchical dictionary learning seeks multiple dictionaries
at different image scales to capture complementary coherent
characteristics. We propose a method to learn a hierarchy of
two overcomplete synthesis dictionaries with an image classi-
fication goal. The classification objective in some sense reg-
ularizes the joint optimization of the hierarchical dictionaries
and injects refinement feedback. The validation of the pro-
posed approach is based on its classification performance us-
ing two well-known data sets.

Index Terms— image classification, dictionary learning,
sparse coding, dimension reduction, image processing

1. INTRODUCTION

Parsimonious data representation by learned overcomplete
dictionaries has recently shown promising results in a variety
of problems such as image denoising [1, 2, 3], image restora-
tion [4, 5, 6], audio processing [7, 8], and image classification
[9, 10]. This frame-like representation of each data vector
as a linear combination of atoms, carries a sparse notion of
the associated coefficients. Hence the so-called sparse coding
is based on an overcomplete dictionary. Dictionary learn-
ing has also been shown to be more flexible in adapting the
representation to different tasks.

Over the last decade, many techniques have been devel-
oped to perform dictionary learning, and sparse representa-
tion. K-SVD [11] is based on a generalized k-means cluster-
ing method which efficiently learns an overcomplete dictio-
nary from the training samples. The K-SVD method can be
used in conjunction with orthogonal matching pursuit (OMP)
[12] to learn theL0 sparse representations of the data samples.
Iterative hard thresholding [13] and coordinate descent algo-
rithm can also be applied to learn an overcomplete dictionary,
and the L1 sparse representations of data. Many other dictio-
nary learning methods such as online dictionary learning [14]
have been developed with large training sets in mind.

The above mentioned methods achieve sparse feature vec-
tors with no account for the target task which will exploit the
extracted feature vectors. Other works have accounted for the

target task, and have yielded higher performances especially
in image classification task. Task driven dictionary learning
[15] obtains adapted dictionary and sparse representation by
minimizing a classification cost function. Label Consistent K-
SVD (LC-KSVD) [16] consists of a K-SVD based algorithm
to find sparse feature vectors belonging to the same class close
to each other, and sparse feature vectors belonging to different
classes far from each other.

In this work, we propose to jointly learn a hierarchy of two
overcomplete synthesis dictionaries with a minimal classifica-
tion error as a goal. The resulting representations of images at
two different scales, are subsequently used to classify images.
Intuitively, the first scale captures the fine low level structures
comprising the image vectors used for learning, while the sec-
ond scale coherently captures more complex structures. The
classification is ultimately carried out by assembling the sec-
ond scale features of an image together and assessing their
contribution.

The hierarchical framework learns general structures for
the first scale, and the local relationships between them on
the second scale for each image class group. Therefore, it, to
a large extent, attenuates the subtle differences among the im-
ages within the same class. This is by virtue of the scale-based
representation, assembling low level features and reconciling
those differences and ultimately enhancing the performance.
By simultaneously minimizing the error of image classifica-
tion, we iteratively adapt the dictionaries to help build better
feature vectors for the very task.

This paper is organized as follows: We formulate and pro-
pose our new approach in Section 2, and present substantiat-
ing experimental results in Section 3. We provide some con-
cluding remarks in Section 4.

2. THE PROPOSED METHOD

The classical approach to image classification starts with rep-
resenting each image as a sparse linear combination of atoms
from a synthesis dictionary [14], as shown in Eqn. (1). This is
typically followed by classification techniques such as SVM
[17], neural networks or linear classifiers operating on the
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Fig. 1: Sequential steps of a hierarchical dictionary learning.

sparse feature vectors. To that end, one vectorizes all train-
ing images into a matrix G and uses K-SVD [11] and OMP
[12] to perform dictionary learning and sparse representation,

arg min
D,A

||G−DA||2F ,

s.t. ||ai||0 < T ∀i = 1, ..., N,

D ∈ C,

(1)

where G is an L × N matrix 1. Each column of G is a vec-
torized image, and N is the total number of training images.
Dictionary D is an L ×K matrix with K atoms, and A is a
sparse representation of the G matrix. C is the convex set of
matrices which have columns with unit L2-norm.

2.1. Problem Formulation

Joint dictionary learning and image classification have been
studied in a few recent papers [15, 16, 18]. In this paper,
we propose hierarchical dictionaries through learning the first
layer dictionary D(1) and the associated feature vectors A(1)

on small image patches. The second layer dictionary D(2)

is learned on the concatenated feature vectors of a subset of a
few adjacent patches from the first layer. The sparse represen-
tation of the patches of an entire image are vectorized into a
single vector to proceed with classification. The processes of
hierarchical dictionary learning and image classification are
the result of solving the following functional:

arg min
D(1),A(1),

D(2),A(2),W

||X −D(1)A(1)||2F + λ1||P1(A(1))−D(2)A(2)||2F+

λ2||Y − Φ(WP2(A(2)))||2F + λ3||A(1)||2F + λ4||W ||2F ,

s.t. ||a(2)
i ||0 < T ∀i = 1, ..., N2,

D(1),D(2) ∈ C,
(2)

where X is a p2 × N1 matrix. Each column of X is a vec-
torized p × p patch, and N1 is the total number of patches
over all the training images. The P1 operator is concatenating
n1 adjacent patches of an image in to a single column. D(1)

1In some applications L0-norms are replaced in practice by L0-norms.

and D(2) are dictionaries withK1 andK2 atoms respectively.
The P2 operator is concatenating all patches of a single image
in a single column. The classification is via ”one-versus-all”
scheme. Hence, Y is aC×N matrix withC being the number
of classes and N being the total number of training images.
All entries of column i of Y can be set to−1 with +1 in only
row c. W as coefficient parameter matrix for the classifica-
tion model needs to be jointly learned with D(1), A(1), D(2),
and A(2). Φ is an activation function. In Fig. (1) we show the
required sequence of computational steps with the resulting
matrices from Eqn. (2) and corresponding structures.

Feature vectors from the first layer a
(1)
i are built from

small image patches thus, making the dictionary atoms of
D(1) represent primitive characteristics of the images such
as vertical, horizontal and diagonal lines. Adjacent represen-
tation vectors from the first layer are consolidated in order
to build the second layer sparse representations a

(2)
i . Thus,

the dictionary atoms of D(2) are expected to capture relations
between neighbouring representations of the images. Build-
ing the second layer feature vectors using the first layer fea-
ture vectors of small image patches makes the overall rep-
resentation robust to small differences of images within the
same class. Particularly, the hierarchical dictionary learning
method yields smaller distances between the feature vectors
belonging to the same class.

2.2. Algorithm

As shown next, Algorithm (1) includes initialization and steps
for solving the optimization problem in Eqn. (2). Lines 1-3
of the algorithm are finding initial values of the D(1), A(1),
D(2), A(2), and W matrices. The optimization problems in
the first and the second line may be solved by K-SVD and
OMP methods, and the optimization problem in line 3 is a
convex problem which can be solved by a gradient descent ap-
proach. Lines 5-9 are iteratively solving five relatively simple
optimization problems for m iterations to reach the solution
of Eqn. (2). m can be chosen based on the performance of the
classifier on training data set and cross validation. Regarding
the fact that the P1 and P2 operators are only reshaping ma-
trices, they are invertible.
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Algorithm 1
Initialization:

1: <D
(1)
0 ,A

(1)
0 >= arg min

D(1),A(1)

||X −D(1)A(1)||2F + λ3||A(1)||2F ,

s.t : D(1) ∈ C.
2: <D

(2)
0 ,A

(2)
0 >= arg min

D(2),A(2)

||P1(A(1))−D(2)A(2)||2F ,

s.t : D(2) ∈ C, ||A(2)
i ||0 < T ∀i = 1, .., N2.

3: W 0 = arg min
W

||Y − Φ(WP2(A(2)))||2F + λ2||W ||2F .

Solving by alternating method:
4: for t = 0 : 1 : m do
5: A

(1)
t+1 = arg min

A(1)

||X −D
(1)
t A(1)||2F + λ3||A(1)||2F+

λ1||P1(A(1))−D
(2)
t A

(2)
t ||2F .

6: D
(1)
t+1 = arg min

D(1)

||X −D(1)A
(1)
t ||2F , s.t : D(1) ∈ C.

7: A
(2)
t+1 = arg min

A(2)

||P1(A
(1)
t )−D

(2)
t A(2)||2F+

λ2
λ1
||Y − Φ(W tP2(A(2)))||2F ,

s.t : ||A(2)
i ||0 < T ∀i = 1, .., N2.

8: D
(2)
t+1 = arg min

D(2)

||P1(A
(1)
t )−D(2)A

(2)
t ||2F , s.t : D(2) ∈ C.

9: W t = arg min
W

||Y − Φ(WP2(A
(2)
t ))||2F + λ4

λ2
||W ||2F .

10: end for

2.3. Adaptivity by Gradient

The procedure of finding the gradient of a term, such as ||Y −
Φ(W tP2(A(2)))||2F , on the right-hand side of equation at line
7 with respect to A(2), are as follows; Let ξ(A) = ||Y −
Φ(WP2(A))||2F , then ξ(A) can be written as:

ξ(A) =

N∑
j=1

||yj − Φ(WP2(aj))||22 =

N∑
j=1

eTj ej , (3)

where Y = [y1, ..,yN ], A = [a1, ..,aN2
], and ej = yj −

Φ(WP2(aj)). Let vj = WP2(aj), and ŷj = Φ(vj). We
can then, write the gradient of ξ(A) with respect to A as fol-
lows:

∂ξ(A)

∂A
= P−12 (

∂ξ(A)

∂P2
),

∂ξ(A)

∂P2
= [

∂ξ(A)

∂P2,1
, ..,

∂ξ(A)

∂P2,N
],

∂ξ(A)

∂P2,j
=

∂vj

∂P2,j

∂ŷj

∂vj

∂ej
∂ŷj

∂ξ(A)

∂ej
,

∂ξ(A)

∂P2,j
= W T × diag(Φ′(vj))×−1I × 2ej ,

(4)

where for writing simplicity, we used P2(A(2)) and P2(a
(2)
j )

for P2 and P2,j respectively. diag(Φ′(vj)) is a diagonal ma-
trix of vector Φ′(vj), and P−12 is the inverse function of P2

which is reshaping a matrix to its original form.

Fig. 2: Subset of images in Extended YaleB dataset.

3. EXPERIMENTS

Our evaluation of the proposed methodology, was carried out
on the Extended YaleB database [19], and STL-10 dataset
[20].

3.1. Extended YaleB Dataset

This database contains 2,414 face images from 38 individu-
als [19]. Each individual has about 64 images, and the size
of each image is 192 × 168 pixels. Half of the images per
individual are chosen randomly for training and the other half
is used for testing. A subset of the images in this dataset are
shown in Fig. (2). Because of varying illumination condi-
tions and face expressions, this dataset is a challenging dataset
for classification. In our approach, the images are partitioned
into non-overlapping patches of size 24 × 24 pixels with 200
atoms in the first layer dictionary. Four adjacent patches are
concatenated to learn the sparse representations as well as the
dictionary in the second layer. The second layer dictionary
has 1000 atoms, and the sparse representations have at most
300 non-zero entries. We compare the performance of our
method with the state of some art methods in Table (1).

Table 1: Recognition results using random-faces features on
the Extended YaleB dataset and comparing with Locality-
constrained Linear Coding (LLC), Sparse Representation-
based Classification (SRC), and Label Consistent K-SVD
(LC-KSVD) methods

Method Accuracy (%)

SRC [21] 97.2
LLC [22] 90.7

LC-KSVD [16] 96.7
Our approach 98.5

Even though the LC-KSVD [23] approach is learning dis-
criminative dictionaries via joint classification and dictionary
learning but, as maybe seen from Table (1), our approach reg-
isters the highest accuracy. This is due to using the hierar-
chical approach. On the first layer the elementary details of
the images are learned, and the higher level characteristics of
the images are learned via the second layer dictionary. Fig
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(a) (b)

Fig. 3: Sample dictionary atoms from first and second layer
dictionaries.

(3.a) shows a subset of dictionary atoms from the first layer
dictionary. We can recognize a few basic characteristics of
a face in this picture, and we expect the second layer dictio-
nary to assemble these lower scale features and show higher
scale features of faces. Fig (3.b) shows a subset of dictionary
atoms from the second layer dictionary (I ⊗D(1))D(2). As
expected, the atoms of the second layer dictionary are show-
ing more distinct features of faces such as the shape of the
noses, distance between the eyes and the eyebrows.

3.2. STL-10 Dataset

This database contains 10 image classes of airplane, bird, car,
cat, deer, dog, horse, monkey, ship, truck. The images are
96 × 96 pixels, color images. There are 100 training images
and 800 test images per class. A subset of the images in this
dataset are shown in Fig. (4).

Due to the small training set size, this dataset is rec-
ognized as a very challenging dataset for classification. In
our approach, the images are partitioned in non-overlapping
patches of size 12 × 12 pixels with 200 atoms in the first
layer dictionary. Four adjacent patches are concatenated to
learn the sparse representations as well as the dictionary in
the second layer. The second layer dictionary has 1000 atoms
and the sparse representations have at most 300 non-zero
entries. We compare the performance of our method with the
state of some art methods in Table (2).

As maybe seen from Table (2), our approach registers the

Fig. 4: Subset of images in STL-10 dataset.

Table 2: Classification results using features on the STL-10
dataset

Method Accuracy (%)

K-SVD [11] 40.6
Coates [20] 51.5

LC-KSVD [23] 41.3
Our approach 53.8

highest accuracy. Similarly to the previous dataset, the ba-
sic structure of the images are learned in the first layer, and
more complex characteristics of the images are learned in the
second layer dictionary.

4. CONCLUSIONS

In this paper, we have used two image datasets to evaluate the
classification performance of the proposed hierarchical dic-
tionary learning method. We have demonstrated the impor-
tance of representing images by learning image characteris-
tics at multiple scales via hierarchical dictionaries. We have
also shown that refining the dictionary learning and feature
selection by accounting for the target task improves the per-
formance of the algorithm. The evaluation results show the
merit of the proposed method for classifying the images. The
idea can be generalized to arbitrary number of layers in dif-
ferent datasets.
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