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ABSTRACT

Traditional visual speech recognition systems consist of
two stages, feature extraction and classification. Recently,
several deep learning approaches have been presented which
automatically extract features from the mouth images and aim
to replace the feature extraction stage. However, research on
joint learning of features and classification is very limited. In
this work, we present an end-to-end visual speech recognition
system based on Long-Short Memory (LSTM) networks. To
the best of our knowledge, this is the first model which simul-
taneously learns to extract features directly from the pixels
and perform classification and also achieves state-of-the-art
performance in visual speech classification. The model con-
sists of two streams which extract features directly from the
mouth and difference images, respectively. The temporal dy-
namics in each stream are modelled by an LSTM and the fu-
sion of the two streams takes place via a Bidirectional LSTM
(BLSTM). An absolute improvement of 9.7% over the base
line is reported on the OuluVS2 database, and 1.5% on the
CUAVE database when compared with other methods which
use a similar visual front-end.

Index Terms— Visual Speech Recognition, Lipreading,
End-to-End Training, Long-Short Term Recurrent Neural
Networks, Deep Networks

1. INTRODUCTION

Speech is an audiovisual signal which consists of the audio
vocalisation and the corresponding mouth configuration. Al-
though most of the information is carried by the audio signal,
the visual signal also carries complementary and redundant
information. This visual information, which is not affected
by acoustic noise, can significantly improve the performance
of speech recognition in noisy environments.

Traditionally, visual speech recognition systems consist
of two stages, feature extraction from the mouth region of in-
terest (ROI) and classification [1, 2, 3]. The most common
feature extraction approach is the use of a dimensionality re-
duction/compression method, with the most popular being the
Discrete Cosine Transform (DCT), which results in a com-
pact representation of the mouth ROI. In the second stage,

a dynamic classifier, like Hidden Markov Models (HMMs)
or Long-Short Term Memory (LSTM) recurrent neural net-
works, is used to model the temporal evolution of the features.

Recently, several deep learning approaches for visual
speech recognition have been presented. The vast major-
ity also follow a two stage approach where deep bottleneck
architectures are used for feature extraction. First, high di-
mensional features are extracted from the mouth ROI which
are compressed to a low dimensional representation at the
bottleneck layer of a deep network and then fed to a classifier.
Ngiam et al. [4] applied principal component analysis (PCA)
to the mouth ROI and trained a deep autoencoder to extract
bottleneck features. The features from the entire utterance
were fed to a support vector machine ignoring the temporal
dynamics of the speech. Ninomiya et al. [5] also applied
PCA to the mouth ROIs and used a deep autoencoder to
extract bottleneck features but an HMM was used in order
to take into account the temporal dynamics. Sui et al. [6]
extracted local binary patterns from the mouth ROI and used
a deep autoencoder to reduce their dimensionality. Then, the
bottleneck features were concatenated with DCT features and
fed to an HMM. A similar approach has also been followed in
audiovisual speech recognition [7, 8, 9] where a shared rep-
resentation of the input audio and visual features is extracted
from the bottleneck layer.

Few works have also been presented which extract bottle-
neck features directly from the pixels. Li [10] used a convo-
lutional neural network (CNN) in order to extract bottleneck
features from dynamic representations of images, which are
fed to an HMM for classification. In our previous work [11],
we extracted bottleneck features directly from the raw mouth
ROI using a deep feedforward network and then trained an
LSTM for classification. Noda et al. [12] used a CNN to pre-
dict the phoneme that corresponds to an input mouth ROI, and
then an HMM is used together with audio features in order to
classify an utterance.

Despite the success of deep learning methods in feature
extraction, work on end-to-end visual speech recognition has
been very limited. To the best of our knowledge, only Wand
et al. [13] developed an end-to-end system for lipreading.
The system consists of one feedforward layer followed by
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Fig. 1: Overview of the end-to-end visual speech recognition
system. Two streams are used for feature extraction directly
from the raw images. The first stream extracts features from
the raw mouth ROI and the second stream from the diff mouth
ROI in order to capture local temporal dynamics. The ∆ and
∆∆ features are also computed and appended to the bottle-
neck layer. The encoding layers are pre-trained using RBMs.
The temporal dynamics are modelled by an LSTM in each
stream. A BLSTM is used to fuse the information from both
streams and provides a label for each input frame.

two LSTM layers and trained to perform lipreading directly
from raw mouth ROIs. The system was tested on a subject-
dependent experiment on the GRID corpus[14] and although
it outperformed other baseline systems it failed to outperform
the state-of-the-art results [15].

In this paper, we present an end-to-end visual speech
recognition system which jointly learns the feature extraction
and classification stages. To the best of our knowledge, this
is the first end-to-end model which performs visual speech
recognition from raw mouth ROIs and achieves state-of-the-
art performance. The system consists of two streams, one
which encodes static information and one which encodes
local temporal dynamics. The former operates on the raw
mouth ROIs and the latter on the difference (diff) images. An
LSTM models the temporal dynamics in each stream and the
fusion of both streams occurs through a BLSTM.

We perform subject independent experiments on two dif-
ferent datasets, OuluVS2 and CUAVE. An absolute improve-
ment of 9.7% over the baseline is reported on the OuluVS2

Fig. 2: Example of mouth ROI extraction from CUAVE

database, and 1.5% on the CUAVE database when compared
with other methods which use a similar visual front-end.

2. DATABASES

The databases used in this study are the OuluVS2 [16] and
CUAVE [17]. The OuluVS2 contains 52 speakers saying 10
utterances, 3 times each, so in total there are 156 examples
per utterance. The utterances are the following: “Excuse
me”, “Goodbye”, “Hello”, “How are you”, “Nice to meet
you”, “See you”, “I am sorry”, “Thank you”, “Have a good
time”, “You are welcome”. The mouth ROIs are provided and
they are downscaled to 26 by 44 in order to keep the aspect
ratio constant.

The CUAVE dataset contains 36 subjects speaking digits 0
to 9, 5 times each, so in total there are 180 examples per digit.
The normal portion of the database is used where the subjects
are in frontal position. Sixty eight points are tracked on the
face using the tracker proposed in [18]. The faces are first
aligned using a neutral reference frame in order to normalise
them for rotation and size differences. This is done using
an affine transform using 5 stable points, two eyes corners in
each eye and the tip of the nose. Then the center of the mouth
is located based on the tracked points and a bounding box with
size 90 by 150 is used to extract the mouth ROI as shown in
Fig. 2. Finally, the mouth ROIs are downscaled to 30 by 50.

3. END-TO-END VISUAL SPEECH RECOGNITION

The proposed deep learning system for visual speech recogni-
tion is shown in Fig. 1. It consists of two independent streams
which extract features directly from the raw input. The first
stream mainly encodes static information by extracting fea-
tures directly from the raw mouth ROI. The second stream
encodes the local temporal dynamics by extracting features
from the diff mouth ROI, which is computed by taking the
difference between two consecutive frames.

Both streams follow a bottleneck architecture in order to
compress the high dimensional input image to a low dimen-
sional representation at the bottleneck layer. The same ar-
chitecture as in [19] is used, where 3 sigmoid hidden layers
are used with sizes of 2000, 1000 and 500, respectively, fol-
lowed by a linear bottleneck layer. These encoding layers are
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Table 1: Classification Accuracy on the OuluVS2 database.
The end-to-end models are evaluated using the protocol sug-
gested in [22] where 40 subjects are used for training and val-
idation and 12 subjects are used for testing. † These models
use a leave-one-subject-out cross validation for evaluation.

Method Classification
Accuracy

End-to-End (Raw Image) 78.0

End-to-End (Diff Image) 75.8

End-to-End (Raw + Diff Images, Fig. 1) 84.5

DCT + HMM [22] † 74.8

Latent Variable Models [22] † 73.0

pre-trained in a greedy layer-wise manner using Restricted
Boltzmann Machines (RBMs) [20]. The ∆ (first derivatives)
and ∆∆ (second derivatives) [21] features are also computed,
based on the bottleneck features, and they are appended to the
bottleneck layer. In this way, during training we force the en-
coding layers to learn representations which produce good ∆
and ∆∆ features.

Finally, an LSTM layer is added on top of the encoding
layers in order to model the temporal dynamics of the fea-
tures in each stream. The LSTM outputs of each stream are
concatenated and fed to a BLSTM in order to fuse the infor-
mation from both streams. The output layer is a softmax layer
which provides a label for each input frame. The entire sys-
tem is trained end-to-end which enables the joint learning of
features and classifier. In other words, the encoding layers
learn to extract features from raw images which are useful for
classification using LSTMs.

4. EXPERIMENTAL SETUP

4.1. Evaluation Protocol

We first partition the data into training and test sets. The pro-
tocol suggested by the creators of the OuluVS2 database is
used [22] where 40 subjects are used for training and vali-
dation and 12 for testing. We randomly divided the 40 sub-
jects into 30 and 10 subjects for training and validation pur-
poses, respectively. This means that there are 900 training
utterances, 300 validation utterances and 360 test utterances.

The evaluation protocol suggested in [4] was used for ex-
periments on the CUAVE database. The odd-numbered sub-
jects (18 in total) are used for testing and the even-numbered
subjects are used for training. We further divided the latter
ones into 12 subjects for training and 6 for validation. This
means that there are 600, 300 and 900 training, validation and
test utterances, respectively.

Table 2: Classification Accuracy on the CUAVE database.
The end-to-end model is trained using the same protocol as
[4, 23] where 18 subjects are used for training and validation
and 18 for testing. ∗ This model is trained on 28 subjects and
tested on 8 subjects. † These models are trained and tested
using a 6-fold cross validation. ‡ This model uses a visual
front-end which is significantly more complicated than ours.

Method Classification
Accuracy

End-to-End (Raw Image) 71.4

End-to-End (Diff Image) 65.9

End-to-End (Raw + Diff Images, Fig. 1) 78.6

Deep Autoencoder + SVM [4] 68.7

Deep Boltzmann Machines + SVM [23] 69.0

AAM +HMM [24] † 75.7

Patch-based Features + HMM [25] ∗ 77.1

Visemic AAM + HMM [26] † ‡ 83.0

4.2. Preprocessing

Since all the experiments are subject independent we first
need to reduce the impact of subject dependent characteris-
tics. This is done by subtracting the mean image, computed
over the entire utterance, from each frame.

The next step is the normalisation of data. As recom-
mended in [20] the data should be z-normalised, i.e. the mean
and standard deviation should be equal to 0 and 1 respectively,
before training an RBM with linear input units. Hence, each
image is z-normalised before pre-training the encoding layers.

4.3. Training

RBM Training: A Gaussian-Bernoulli RBM [20] is used
for the first layer since the input (pixels) is real-valued, fol-
lowed by two Bernoulli-Bernoulli RBMs and one Bernoulli-
Gaussian RBM for the linear bottleneck layer. Each RBM
is trained for 20 epochs with a mini-batch size of 100 and
L2 regularisation coefficient of 0.0002 using contrastive di-
vergence. The learning rate is fixed to 0.1 for the Bernoulli-
Bernoulli RBMs and to 0.001 when one layer (input or bot-
tleneck) is real-valued as suggested in [20].
End-to-End Training: The AdaDelta algorithm [27], which
automatically computes the learning rate in each epoch, was
used for training with a mini-batch size of 20 utterances.
Early stopping with a delay of 5 epochs was also used in or-
der to avoid overfitting. Gradient clipping was applied to the
LSTM layers. The label of the last frame in each utterance
was used in order to label the entire utterance.
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Fig. 3: CUAVE confusion matrix. The labels for X and Y
axes correspond to digits 0 to 9.

5. RESULTS

Results for the OuluVS2 database are shown in Table 1. Since
this database has been released recently only the baseline re-
sults provided by the creators are available. The best provided
baseline result, 74.8%, is achieved by HMMs in combination
with DCT features. We first test each stream of the end-
to-end model individually, i.e., just the encoding layers and
the LSTM layer are considered. It is interesting to note that
both streams outperform the baseline performance. The best
overall result is achieved by the end-to-end 2-stream model,
shown in Fig. 1, with a classification accuracy of 84.5%. We
should also emphasise that the baseline performance is evalu-
ated using a leave-one-subject-out cross validation approach
which means there are 51 subjects for training and validation
and only one subject for testing in each iteration. On the other
hand, we use much fewer subjects for training and validation,
40, and many more subjects for testing, 12, which makes the
problem more challenging. Even in this case, the end-to-end
system results in a significant improvement over the baseline
performance.

Results for the CUAVE database are shown in Table 2.
There is not a standard evaluation protocol for this database
which makes comparison between different works difficult.
Only [4] and [23] use the same evaluation protocol as in this
study. We see that the single-stream end-to-end model based
on raw mouth ROIs outperforms both previous works. The
2-stream end-to-end model outperforms all approaches that
use a similar visual front-end. This includes [24] where a 6-
fold cross validation was used with 30 subjects for training
and validation and 6 for testing, and [25] where 28 subjects
were used for training and validation and 10 for testing. In
this study, we use much fewer subjects, 18, for training and
validation and many more subjects for testing, 18. Only [26]
achieves a higher performance than our end-to-end system,
but a much more complicated visual front-end is used, with a
cascade of active appearance models (AAM), and the model
is evaluated using a 6-fold cross-validation.

Figures 3 and 4 show the confusion matrices for both
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Fig. 4: OuluVS2 confusion matrix. The labels for X and Y
axes correspond to the 10 phrases described in section 2.

datasets. In the OuluVS2 dataset, the most confusions were
between phrases 3 (Hello) and 8 (Thank you) and between
phrases 6 (See you) and 9 (Have a good time). In the CUAVE
dataset, number pairs zero and two, six and nine were most
frequently confused. Zero and two share similar viseme se-
quences near the end of the utterance while six and nine share
similar viseme sequences at the start of the utterance which
explains the more frequently occurring confusions for these
number pairs.

Finally, we should also mention that we experimented
with convolutional neural networks for the encoding layers
but this led to worse performance than the proposed system.
This is also reported in [13] and it is likely due to the small
training sets. We also used data augmentation which im-
proved the performance but did not exceed the performance
of the proposed system.

6. CONCLUSION

In this work, we present an end-to-end visual speech recog-
nition system which jointly learns to extract features directly
from the pixels and perform classification using LSTM net-
works. Results on subject independent experiments demon-
strate that the proposed model achieves state-of-the-art per-
formance on the OuluVS2 and CUAVE databases when com-
pared with models which use a similar visual front end. The
model can be easily extended to multiple streams so we
are planning to add an audio stream in order to evaluate its
performance on audiovisual speech recognition tasks.
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