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ABSTRACT

A novel two-stage age prediction approach with group-
specific features is proposed in this paper. Aging process is
captured through a highly discriminating feature representa-
tion that models shape, appearance, skin spots, and wrinkles.
The two-stage method consists of a multi-class Support Vec-
tor Machine (SVM) to predict the age bracket while the final
age prediction is carried out using Support Vector Regression
(SVR). The novelty of our work is that the feature extrac-
tion is group-specific and can therefore be tailored to each
age bracket in the specific age prediction step. The FG-NET
Aging dataset was used to evaluate the proposed method
and an impressive mean absolute error (MAE) of 3.98 was
achieved. Our approach outperforms the current state-of-the-
art while increasing the robustness to blur, expression and
lighting variation with local phase features.

Index Terms— Age prediction, Two-stage classifier,
Group-specific features, Local phase features, Overlapping

1. INTRODUCTION

Age prediction from facial images is increasingly receiv-
ing attention to solve age-invariant person identification,
age-based access control, age-adaptive targeted marketing,
amongst other applications. Moreover, many complex dis-
eases are associated with aging. Motivated by this, Chen et
al. [1] found that facial morphology features are correlated
with health indicators in the blood. Facial features therefore
are more reliable aging bio-markers than blood profiles and
can better reflect general health status than chronological age.
This is a potential application for age prediction that may help
to improve our health. Facial aging is a complex process and
it is generally slow and irreversible [2] since different factors
can influence it such as gender, heredity, ethnicity, lifestyle,
environment, etc. All these factors and also different pertur-
bations on images, such as expression, lighting, occlusion,
pose, and blur, make determining a subjects’s age from their
face very challenging.

Several age prediction approaches have been proposed in
recent years. For instance, Lanitis et al. [3] proposed the
Weighted Appearance Specific (WAS) which represents the

aging pattern by a quadratic function. Geng et al. [4] pro-
posed the AGES algorithm which uses a sequence of indi-
vidual’s facial images for the aging modeling. Duong et al.
[5] presented a hierarchical approach that combines SVM and
SVR to improve the performance of age prediction. Choi et
al. [6] proposed a hierarchical age prediction to handle hard
boundaries between age brackets. They also exploited Local
Binary Patterns (LBP) and Gabor wavelets for the extraction
of appearance features. Recently, Liu et al. [7] proposed a hy-
brid constraint SVR that uses fuzzy age labels in combination
with the real ones to train it. Deep learning aging representa-
tion approaches were presented by Wang et al. [8] and Chang
and Chen [9]. The last proposed a cost-sensitive ordinal hy-
perplanes ranking (CSOHR) algorithm for age prediction and
also the scattering transform (ST) for feature representation
that is based on convolutional neural networks (CNN). Dibek-
lioglu et al. [10] combined facial dynamics derived from fa-
cial expressions and combined it with the appearance features
to train the classifiers and regressors. Pontes et al. [11] pro-
posed a flexible hierarchical approach to deal with the hard
boundaries between the age brackets and investigated multi-
ple features to represent the facial aging.

This paper builds upon the Pontes et al.’s work [11] which
presented an age prediction approach based on age bracket
classification followed by detailed age prediction. The two-
stage approach first classifies a subject into a determined age
bracket and then a specific regressor is selected to estimate
its age. As in [11], we perform a varying overlapping of
age ranges in the specific age prediction step to tackle the
problem of hard boundaries between age brackets imposed
by the two-stage method. An individual that is misclassified
during the classification step can still have its age well pre-
dicted by a specific regressor due to the varying overlapped
age range [11]. The novelty of our work is that we perform
the training of the regressors in the specific age prediction
step using different feature sets. Our hypothesis is that group-
specific features can capture better the particularities of a spe-
cific age range than general features and that might lead to
better results on age prediction. In the proposed approach,
we use global features to encode the craniofacial growth us-
ing the AAM method since it provides appearance and shape
information. Holistic AAM features however do not contain
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enough skin texture information and to overcome this, a local
approach is used to cope with it. Skin aging is the most per-
ceptible change from adulthood to old age, and to deal with
wrinkles and skin spots the LBP, the Gabor wavelets and the
LPQ techniques are used to extract local features. Finally,
global and local features are combined to form a hybrid fea-
ture vector to have a more discriminating facial aging rep-
resentation. We demonstrate the superior performance and
robustness of our assumption on the FG-NET Aging dataset.

This paper is organized as follows. Section 2 presents the
proposed approach. The results are presented in Section 3.
Finally, the conclusions are stated in the last section.

2. PROPOSED APPROACH

An overview of the proposed method is shown in Fig. 1. Im-
ages from the FG-NET Aging dataset were not taken in con-
trolled conditions. For that reason, every image is converted
to grayscale to decrease the influence of inconsistent colors.
The dataset provides 68 landmarks for each image that in-
clude the center of the eyes which is used to apply a non-
reflective similarity transformation to normalize the images.
The facial images are scaled to the same inter-pupillary dis-
tance [11] and then a mask is applied to delimit and crop the
skin regions of interest. An important component to describe
wrinkles and spots is the local features. The same eleven
skin regions highly correlated with aging proposed by [11]
were selected to capture the aging process (i.e. corners of the
eyes and the mouth, forehead, cheeks, chin, and nose). Fig. 2
shows an example of the eleven skin regions cropped.

Fig. 1. Overview of the proposed age prediction method.

Active Appearance Model is a widely used statistical
method for facial modeling and feature extraction, where
the shape and texture variability are captured from a repre-
sentative training set. Principal component analysis (PCA)
on shape and texture allows to produce a parametric model
that describes the global features of a face. Thus, to capture
shape and appearance features related to aging, the AAM is

Fig. 2. Example of the eleven skin regions and its definition.

employed as global features in the proposed method. Local
features are extracted by the LBP, the Gabor wavelets and
the LPQ operators. LPQ is a powerful feature extractor that
has been used as an alternative to the widely used LBP [12],
mainly due to its robustness not only to blur but also to facial
expression and lighting changes present in real-world images.
Consequently, the LPQ descriptor is employed in this work
to capture wrinkles through local phase features.

In LPQ the phase is examined in local M -by-M neigh-
bourhoods Nx at each pixel position x of the image f(x).
These local spectra are computed using a short-term Fourier
transform. The phase information in the Fourier coefficients
is captured by observing the signs of the real and imaginary
parts of each component by using a scalar quantizer qj(x)
that assumes 1 in case of gj(x) ≥ 0, otherwise it assumes
0, where gj(x) is the jth component of the vector, Gx =
[Re{Fx}, Im{Fx}]. The binary coefficients qj(x) are rep-
resented as integer values (0-255) using the coding defined
by the equation fLPQ(x) =

∑8
j=1 qj(x)2

j−1. As a result,
we have the label image fLPQ whose values are the blur in-
variant LPQ labels. Skin details such as thin wrinkles and
spots are captured by the LBP that can detect microstruc-
tures [13]. It labels the pixels of an image by thresholding
the neighbourhood of each pixel and it considers the result as
a binary number. Since LBP considers uniform binary pat-
terns, it is robust to lighting changes and noise which makes
the descriptor very practical for real applications. A set of
Gabor wavelets are employed to capture local features related
to wrinkles due to its robustness to noise such as hair, beard,
shadows, etc. [11, 14, 15]. The Gabor transformation at a
particular image position is calculated through a convolution
with the wavelets, and the local features derive from the mag-
nitude of the resulting complex image.

All the local descriptors are applied in every cropped and
normalized skin region, and once the local features of every
region have been extracted independently, the feature vectors
are concatenated into a single vector. In addition, several
combinations between different techniques are performed in
an attempt to capture unique advantages of each descriptor.
Feature-level fusion has been successfully applied in biomet-
rics [16], images [17], facial expressions [18], etc., and it is
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also employed in this work. Since the local feature vector ex-
tracted by the Gabor wavelets, the LBP and the LPQ is high
dimensional, only the principal components are chosen with
the PCA. The z-score is then applied to normalize the lower
dimensionality features [16]. The feature fusion is built up
through the concatenation of the normalized feature vectors.

Aging differs according to the age brackets of a person.
Wrinkles are usually found in old subjects, while geomet-
ric features normally change during childhood and adulthood.
Two-stage age prediction based on age-bracket specific clas-
sifiers has shown improved results and better ability to deal
with these age-related facial features [6, 11]. Motivated by
this, we argue that group-specific features in the specific age
prediction can better represent age brackets and it can yield
better results. As in [11], we first classify a facial image into
a determined age class by using a SVM and then a SVR is
used to estimate the specific age. The novelty is that the fea-
tures are group-specific so it can be different for each SVR
class in the specific age prediction step. Different amounts of
age range overlapping are considered for the specific age pre-
diction step to decrease misclassification caused by the clas-
sification step. The overlapped classes are defined according
to the misclassification errors and the amount of overlapping
can vary between each pair of SVRs.

3. EXPERIMENTAL RESULTS

The proposed method was evaluated on the FG-NET dataset
[19] which contains 1,002 facial images of 82 subjects from
different races with ages between 0 to 69 years old. The
face images were captured with variation of facial expression,
pose, and lighting, as well as the presence of blurring and oc-
clusion. All images have 68 manually annotated landmark
points characterizing the shape features of the subjects. The
dataset was uniformly split into 75% for training and 25% for
test to perform the experiments. The SVM and the SVRs were
set to use a linear kernel and their parameters were found by a
grid search using 5-fold cross validation. Once the dataset has
a limited amount of data, the Leave-One-Person-Out (LOPO)
cross-validation protocol was also used to evaluate the perfor-
mance of the proposed method. This guarantees that a subject
is not in the training and the test set simultaneously, so the
classifier does not learn individual characteristics, thus de-
creasing the dependence on data on the experimental results.

For the age group classification step we defined four age
brackets based on the data distribution with the aim of having
enough data for learning and evaluation. This also allows to
have a group for children, young adults, adults, and seniors,
especially useful for the FG-NET dataset since it has a wide
age range. The classes were set as: Class 1: 0-13 (total of 513
images); Class 2: 14-21 (233 images); Class 3: 22-39 (187
images); and Class 4: 40-69 (69 images). The age ranges of
the SVRs were defined based on the same ranges described
previously but with different amounts of overlapping depend-

ing on the age ranges. The amounts of overlapping between
the SVRs were defined experimentally on the training dataset.

The AAM was generated using the 68 landmarks provided
for each image. A multi-resolution model based on a Gaus-
sian pyramid was built to deal with the resolution changes
present in the dataset [20]. Some relevant age features are not
sufficiently reconstructed such as the wrinkles in the corner
of the eyes and the nasolabial lines due to the loss of infor-
mation during the PCA. A local feature descriptor is further
necessary to have a better facial aging representation since the
representation power of the AAM is limited. Gabor wavelets
were evaluated in this work to detect lines, and since a face
can contain wrinkles with different thicknesses and directions
it is necessary to generate wavelets with different scale fac-
tors and orientations. Local features of the eleven skin regions
were also extracted with the LBPu2

P,R operator, where P and R
are the circular neighborhood parameters, and P can assume
eight or sixteen pixels while R can vary from one to three pix-
els. The naming u2 means that only uniform patterns are used
to decrease noise in the local texture structures. The LBP de-
scriptor is very discriminating and captures mostly edges and
spots information on the skin if the image is blur-free. In
the experiments using the LPQ the features were extracted
and evaluated using different window sizes (M ). The LPQ is
locally computed for a window in each skin region position
providing an histogram of 256 codes. The code values are
generally higher for young subjects since the phase orienta-
tions are similar due to a smoother skin texture [11].

The performance of the proposed approach was evaluated
using the MAE and the cumulative score (CS) [21] metrics.
MAE is the average of the absolute errors between the esti-
mated age and the ground-truth age. The CS allows the com-
parison of performance at different absolute error levels and
it is defined as CS(l) = (Ne≤l/N) × 100%, where Ne≤l is
the number of test images on which the age prediction makes
an absolute error lower or equal to l years. Several feature
sets combinations were evaluated, either global and local fea-
tures alone or the combination of both to have a better facial
representation. The highest accuracy, 68.80%, was achieved
with the global and local features AAM+LPQ9×9. In order
to recover the errors caused by the age bracket classification
step, varying overlapped age ranges in the specific age predic-
tion step are used in this work. The classification errors were
analyzed to decide on the initial amount of overlapping, from
which, through the increasing or decreasing of such amount,
the values were chosen based on the best results in terms of
MAE of the age prediction method.

Fig. 3 shows the performance in terms of MAE of the
specific age prediction with varying overlapped regions be-
tween the age brackets on various feature sets. Looking in-
dividually at each SVR, the best SVR 1 achieved a MAE of
3.41 years with the AAM+GW8,5 feature set. The best SVR 2
achieved a MAE of 4.64 years with the LBP(16,1)(16,2)(16,3).
The best SVR 3 achieved a MAE of 6.63 years with the
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Fig. 3. Performance in different feature sets of the specific age prediction method with varying overlapped regions.

AAM+LPQ(5×5)(9×9) combination. Finally, the best SVR 4
achieved a MAE of 0.09 years with the AAM+LPQ7×7 fea-
ture set. It is possible to notice from Fig. 3 that the SVR
1 has the best overall MAE since most of the images from
the training set are into its age brackets. In the other hand, the
MAE of the SVR 4 widely oscillates across the extremes due
to the limitation of data for training the 40-69 years old class.
Fig. 3 clearly shows that the MAE increases with age as ex-
pected, since the main features associated with face shape
greatly changes from 0 to 18 years old with no significant
changes in people older than 18 years. These shape features
make estimating a subjects’s age easier than looking at facial
skin features that only change significantly in older people.

Our group-specific features approach for the specific age
prediction step can now be performed since we know the re-
sults of each SVR in several feature sets. Instead of training
all the SVRs with the same features as in other works, we
train each SVR with an independent feature set according to
its performance in a specific age bracket. Performing the two-
stage age prediction using the best SVRs as described earlier
we achieved an impressive MAE of only 3.98 years. This
result cleary shows that using group-specific features in the
specific age prediction step can improve the final performance
of a two-stage age prediction.

Table 1. Comparison of the proposed method to the previous
works reported on the FG-NET Aging dataset.

Method MAE Method MAE

WAS [3] 8.06 Choi et al. [6] 4.65
AGES [4] 6.77 PLO [22] 4.82
RUN [23] 5.78 CA-SVR [24] 4.67
Ranking [23] 5.33 Han et al. [25] 5.10
LARR [26] 5.07 HC-SVR [7] 5.28
SVR [26] 5.66 Wang et al. (CNN) [8] 4.26
MTWGP [27] 4.83 ST+CSOHR (CNN) [9] 4.70
OHRank [28] 4.85 Pontes et al. [11] 4.50
Duong et al. [5] 4.74 Group-specific features 3.98

The MAE for the proposed approach and other methods
reported on the FG-NET dataset are given in Tab. 1. It can

be noticed that the proposed approach has the lowest MAE
when compared with other state-of-the-art methods. Deep
learning techniques for age estimation based on CNNs have
been investigated by Wang et al. [8] and Chang and Chen [9].
Nevertheless, our method still outperform their approaches
by a margin. Fig. 4 shows the CS at error levels from 0 to 15
years. Note that it moved up by using a group-specific fea-
tures in the specific age prediction step. We have also eval-
uated the proposed strategy on the MORPH Album 2 dataset
used in [11] and we have observed a reduction of ∼5% in the
MAE. This demonstrates that the proposed approach is ro-
bust to other datasets. To the best of our knowledge, this is
the first work using group-specific features in the specific age
prediction step yielding promising results.
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Fig. 4. Cumulative scores of the proposed approach (blue)
and the two-stage age prediction proposed in [11] (red) at er-
ror levels from 0 to 15 years.

4. CONCLUSIONS

This paper has presented a novel two-stage age prediction ap-
proach that uses group-specific features during the specific
age prediction step. Feature extraction can therefore be tai-
lored to each age group meaning that the type of features
used can be different for each SVR class. Experimental re-
sults on the FG-NET dataset show that our method outper-
forms other state-of-the-art systems for age prediction while
increasing the robustness to blur, expression and lighting vari-
ation with local phase features. Future work will address tech-
niques based on deep learning to enhance the age prediction.
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