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ABSTRACT

Symmetric non-negative matrix factorization (SymNMF) has
important applications in data analytics problems such as document
clustering, community detection and image segmentation. In this
paper, we propose a novel nonconvex variable splitting method for
solving SymNMF. Different from the existing works, we prove that
the algorithm converges to the set of Karush-Kuhn-Tucker (KKT)
points of the nonconvex SymNMF problem with a global sublinear
convergence rate. We also show that the algorithm can be efficiently
implemented in a distributed manner. Further, we provide sufficient
conditions that guarantee the global and local optimality of the
obtained solutions. Extensive numerical results performed on both
synthetic and real data sets suggest that the proposed algorithm
yields high quality of the solutions and converges quickly to the set
of local minimum solutions compared with other algorithms.

Index Terms— Symmetric Nonnegative Matrix Factorization,
Karush-Kuhn-Tucker points, variable splitting, global and local
optimality, clustering

1. INTRODUCTION

Recently, symmetric non-negative matrix factorization (SymNMF)
has found many applications in document clustering, community
detection, image segmentation and pattern clustering in
bioinformatics [1–3]. SymNMF is not only able to deal with the
non-linearly separable data points, such as image data, but also
capture the inherent data structure with the graph representation
[1]. Mathematically, SymNMF approximates a given (usually
symmetric) non-negative matrix Z ∈ RN×N by a low rank matrix
XXT , where the factor matrix X ∈ RN×K is component-wise
non-negative, typically with K ≪ N . Such problem can be
formulated as the following nonconvex optimization problem
[1, 3, 4]:

min
X≥0

f(X) =
1

2
∥XXT − Z∥2F (1)

where ∥ · ∥F denotes the Frobenius norm.
Due to the importance of the SymNMF problem, many

algorithms have been proposed in the literature for finding its
high-quality solutions. To this end, first rewrite the SymNMF
equivalently as

min
Y≥0,X=Y

1

2
∥XYT − Z∥2F . (2)

A simple strategy is to ignore the equality constraint X = Y,
and then alternatingly perform the following two steps: 1) solving
Y with X being fixed (a non-negative least squares problem); 2)
solving X with Y being fixed (a least squares problem). Such ANLS

algorithm has been proposed in [1] for dealing with SymNMF.
Unfortunately, despite the fact that an optimal solution can be
obtained in each subproblem, there is no guarantee that the Y-iterate
will converge to the X-iterate. The algorithm in [1] adds a
regularized term for the difference between the two factors to the
objective function and explicitly enforces that the two matrices be
equal at the output. While such extra step enforces symmetry, it
destroys the optimality of the subproblems, resulting in the loss
of global convergence guarantee. A related ANLS-based method
has been introduced in [4], however the algorithm is based on the
assumption that there exists an exact symmetric factorization (i.e.,
∃X ≥ 0 such XXT = Z). Without such assumption, the algorithm
may not converge to Karush-Kuhn-Tucker (KKT) points of (1). A
multiplicative update for SymNMF has been proposed in [3], but
the algorithm not only lacks convergence guarantee (to KKT points
of (1)) [5], but has a much slower convergence speed than the
one proposed in [4]. In [1, 6], algorithms based on the projected
gradient descent (PGD) and the projected Newton (PNewton) have
been proposed, both of which directly solve the original formulation
(1). However, there has been no global convergence analysis since
the objective function is a nonconvex fourth-order polynomial. The
more recent work applies the nonconvex coordinate descent (CD)
algorithm for SymNMF, with no guarantee that the algorithm will
converge to a stationary point of problem (1), since the minimizer
of the fourth order polynomial is not unique in each coordinate
updating [7].

An important research question for SymNMF is whether it is
possible to design algorithms that lead to globally optimal solutions.
At the first sight such problem appears very challenging since finding
the exact SymNMF is NP-hard [8]. However, some promising
recent findings suggest that when the structure of the underlying
factors are appropriately utilized, it is possible to obtain rather strong
results. For example, in [9], the authors have shown that for the
low rank factorized stochastic optimization problem where the two
low rank matrices are symmetric, a modified stochastic gradient
descent algorithm is capable of converging to a global optimum
with constant probability from a random starting point. Related
works include [10, 11]. However, when the factors are required to
be non-negative, it is no longer clear whether the existing analysis
can still be used to show convergence to global optimality, even
local optimality (a milder result). For the non-negative principle
component problem (that is, finding the leading non-negative
eigenvector, i.e., K = 1), under the spiked model, reference [12]
shows that certain approximate message passing algorithm is able to
find the global optimal solution asymptotically. Unfortunately, this
analysis does not generalize to an arbitrary symmetric observation
matrix and any K. To our best knowledge, there is a lack
of characterization of global and local optimal solutions for the
SymNMF problem.
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In this paper, we focus on analyzing the SymNMF problem.
First, we propose a novel algorithm for the SymNMF, which utilizes
certain nonconvex splitting technique and is capable of converging
to the set of KKT points with provable global convergence rate. The
main idea of the algorithm is to relax the symmetry requirement at
the beginning and gradually enforce it as the algorithm proceeds.
Second, we provide a number of easy-to-check sufficient conditions
guaranteeing the local or global optimality of the obtained solutions.
Numerical results on both synthetic and real data show that the
proposed algorithm achieves fast and stable convergence (often to
local minimum solutions) with low computational complexity.

More specifically, the main contributions of this paper are:
1) We design a novel algorithm, named the nonconvex splitting

SymNMF (NS-SymNMF), which converges to the set of KKT
solutions of SymNMF with a global sublinear rate. To our best
knowledge, it is the first SymNMF solver that possesses provable
global convergence rate.

2) We provide a set of easily checkable sufficient conditions
(which only involve finding the smallest eigenvalue of certain
matrix) that characterize the global and local optimality of the
SymNMF. By utilizing such conditions, we demonstrate numerically
that with high probability, our proposed algorithm converges not
only to a KKT point but to a local optimal solution as well.

Due the limited space of the paper, all proofs are omitted and
will be included in the journal version.

2. THE PROPOSED ALGORITHM

The proposed algorithm leverages the reformulation (2). Our main
idea is to gradually tighten the difficult equality constraint X = Y
as the algorithm proceeds so that when convergence is approached,
such equality is eventually satisfied. To this end, let us construct the
augmented Lagrangian for (2), given by

L(X,Y;Λ) =
1

2
∥XYT−Z∥2F +⟨Y−X,Λ⟩+ ρ

2
∥Y−X∥2F (3)

where Λ ∈ RN×K is a matrix of dual variables; ⟨·⟩ denotes the inner
product operator; ρ > 0 is a penalty parameter whose value will be
determined later.

At this point, it may be tempting to directly apply the
well-known alternating direction method of multipliers (ADMM)
method [13] to the augmented Lagrangian (3), which alternatingly
minimizes the primal variables X, Y, followed by a dual ascent
step Λ ← Λ + ρ(Y − X). Unfortunately, the classical result
for ADMM presented in [13–15] only works for convex problems,
hence they do not apply to our nonconvex problem (2) (note this is
a linearly constrained nonconvex problem where the nonconvexity
arises in the objective function). Recent results such as [16–18]
for analyzing ADMM for nonconvex problems do not apply either,
because in these works the basic requirements are: 1) the objective
function is separable over the block variables; 2) the smooth part
of the augmented Lagrangian function has Lipschitz continuous
gradient with respect to all variable blocks. Unfortunately none of
these conditions are satisfied in our problem.

Next we begin presenting the proposed algorithm. We start by
considering the following reformulation of problem (1)

min
X,Y

1

2
∥XYT − Z∥2F (4)

s.t. Y ≥ 0, X = Y, ∥Yi∥22 ≤ τ, ∀ i,

where Yi denotes the ith row of the matrix Y; τ > 0 is some
given constant. It is easy to check that when τ is sufficiently large
(with a lower bound dependent on Z), then problem (4) is equivalent
to problem (1), in the sense that the KKT points X∗ of the two
problems are identical, which satisfy the optimality conditions given
by [19, Proposition 2.1.2]

⟨(X∗(X∗)T − Z)X∗,X−X∗⟩ ≥ 0, ∀ X ≥ 0. (5)

To be precise, we have the following result.

Lemma 1. Suppose τ ≥ 2∥Z∥F , then the global optimal solutions
as well as the KKT points of the problems (1) and (4) have a
one-to-one correspondence.

The proposed algorithm, named the nonconvex splitting
SymNMF (NS-SymNMF), alternates between the primal updates
of variables X and Y, and the dual update for Λ. Below we
present its detailed steps (superscript t is used to denote the iteration
number).

Y(t+1) =arg min
Y≥0,∥Yi∥22≤τ,∀i

1

2
∥X(t)YT − Z∥2F

+
ρ

2
∥Y −X(t) +Λ(t)/ρ∥2F +

β(t)

2
∥Y −Y(t)∥2F , (6)

X(t+1) =argmin
X

1

2
∥X(Y(t+1))T − Z∥2F

+
ρ

2
∥X−Λ(t)/ρ−Y(t+1)∥2F , (7)

Λ(t+1) =Λ(t) + ρ(Y(t+1) −X(t+1)), (8)

β(t+1) =
6

ρ
∥X(t+1)(Y(t+1))T − Z∥2F . (9)

We remark that this algorithm is very close in form to the standard
ADMM method applied to problem (4) (which lacks convergence
guarantees). The key difference is the use of the proximal term ∥Y−
Y(t)∥2F multiplied by an iteration dependent penalty parameter
β(t) ≥ 0, whose value is proportional to the size of the objective
value. Intuitively, if the algorithm converges to a solution with small
objective value (which appears to be often the case in practice), then
the parameter β(t) vanishes in the limit. It turns out that introducing
such proximal term is crucial in guaranteeing the convergence of
NS-SymNMF.

3. CONVERGENCE ANALYSIS

In this section we provide convergence analysis result of the
NS-SymNMF.

3.1. Convergence and Convergence Rate Analysis

Below we present our first main result, which says that when the
penalty parameter ρ is sufficiently large, the NS-SymNMF algorithm
converges globally to the set of KKT point of (1).

Theorem 1. Suppose the following is satisfied

ρ > 6Nτ. (10)

Then the following statements are true for NS-SymNMF:

1. The equality constraint is satisfied in the limit, i.e.,

lim
t→∞

∥X(t) −Y(t)∥ → 0.
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2. The sequence {X(t),Y(t),Λ(t)} is bounded, and every one
of its limit point is a KKT point of problem (1).

Our second result characterizes the convergence rate of the
algorithm. To this end, we need to construct a function that
measures the optimality of the iterates {X(t),Y(t),Λ(t)}. Define
the proximal gradient of the augmented Lagrangian function as

∇̃L(X,Y,Λ) ,
[

YT − ProjY[YT −∇Y(L(Y,X,Λ)]
∇XL(X,Y,Λ)

]
(11)

where the operator ProjY , ProjY≥0,∥Yi∥22≤τ,∀i, i.e., it is the
projection operator onto the feasible set of Y. Here we propose to
use the following quantity to measure the progress of the algorithm

P(X(t),Y(t),Λ(t)) , ∥∇̃L(X(t),Y(t),Λ(t))∥2F+∥X(t)−Y(t)∥2F .
(12)

It can be verified that limt→∞ P(X(t),Y(t),Λ(t)) = 0, then a KKT
point of the problem (1) is obtained.

Below we show that the function P(X(t),Y(t),Λ(t)) reduces
to zero in a sublinear manner.

Theorem 2. For a given small constant ϵ, let T (ϵ) denote the
iteration index satisfying the following inequality

T (ϵ) , min{t | P(X(t),Y(t),Λ(t)) ≤ ϵ, t ≥ 0}. (13)

Then there exists some constant C > 0 such that

ϵ ≤ CL(X(1),Y(1),Λ(1))

T (ϵ)
. (14)

The above result says that in order for P(X(t),Y(t),Λ(t)) to
reach below ϵ, it takes O(1/ϵ) number of iterations. It follows that
NS-SymNMF converges sublinearly.

3.2. Sufficient Global and Local Optimality Conditions

Since problem (1) is not convex, the KKT points obtained by
NS-SymNMF could be different from the global optimal solutions.
Therefore it is important to characterize the conditions under which
these two different types of solutions coincide. Below we provide
an easily checkable sufficient condition to ensure that a KKT point
(X∗,Ω∗) is also a globally optimal solution for problem (1) (where
Ω is the dual matrix for the constraint X ≥ 0 in problem (1)).

Theorem 3. Suppose that (X∗,Ω∗) is a KKT point of (1). Then,
X∗ is also a global optimal point if the following is satisfied

S , X∗(X∗)T − ZT + Z

2
≽ 0. (15)

Admittedly, the condition given in Theorem 3 could be strong
hence may not be satisfied for some problem instances. In this
section we provide a milder condition which guarantees that a KKT
point to be locally optimal. Such results are also very useful in
practice since they can help identify spurious saddle points such as
X = 0 if ZT + Z is not negative semidefinite.

We have the following characterization of the local optimal
solution of the SymNMF problem.

Theorem 4. Suppose that (X∗,Ω∗) is a KKT point of (1). Define
a matrix T ∈ RKN×KN whose (m,n)th block is a matrix of size
N ×N

Tm,n ,
(
(X′∗

m)TX′∗
n − δ∥X′∗

n ∥22
)
I+X′∗

n (X′∗
m)T + δm,nS, (16)

where S is defined in (15), δm,n is the Kronecker delta function, and
X′∗

m denotes the mth column of X∗. If there exists some δ > 0
such that T ≻ 0, then there exists some ϵ > 0 small enough such
that (X∗,Ω∗) is a local minimum point of (1), meaning that for all
X ≥ 0 satisfying ∥X−X∗∥F ≤ ϵ, we have

f(X) ≥ f(X∗) +
γ

2
∥X−X∗∥2F . (17)

Here the constant γ > 0 is given by

γ = −(2K
2

δ
+K(K − 2))ϵ2 + 2λmin(T ) > 0 (18)

where λmin(T ) > 0 is the smallest eigenvalue of T .

In the special case of K = 1, the sufficient condition set forth in
Theorem 4 can be significantly simplified.

Corollary 1. Suppose that (x∗,Ω∗) is the KKT point of (1) when
K = 1. If there exists some δ > 0 such that

T1 , (1− δ)∥x∗∥22I+ 2x∗(x∗)T − ZT + Z

2
≻ 0. (19)

Then X∗ is a local minimum point of (1).

We comment that the condition given in Theorem 4 is much
milder than that in Theorem 3. Further such condition is also very
easy to check as it only involves finding the smallest eigenvalue
of a KN × KN matrix for each value of δ 1. In our numerical
result (to be presented shortly), we set δ to a series of consecutive
values when performing the test. We have observed that the
solutions generated by the proposed NS-SymNMF algorithm satisfy
the condition provided in Theorem 4 with high probability.

4. IMPLEMENTATION OF THE PROPOSED ALGORITHM

4.1. The Y-Subproblem

To solve the Y-subproblem (6), we use the gradient projection (GP)
method. We define

Z
(t)
Y , (X(t))TZ+ ρ(X(t))T − (Λ(t))T + β(t)(Y(t))T , (20)

A
(t)
Y , (X(t))TX(t) + (ρ+ β(t))I. (21)

Performing the Y(t+1) update in (6) is equivalent to solving

min
Y≥0,∥Yi∥22≤τ,∀i

N∑
i=1

∥A(t)
Y YT

i − Z
(t)
Y,i∥

2
2 (22)

where ZY,i is the ith column of matrix ZX.
This problem can be decomposed into N separable constrained

least squares problems, each of which can be solved independently,
therefore can be implemented in parallel. Here we use the
conventional gradient projection for solving each subproblem, which
generates a sequence by

Y
(t+1)
i = ProjYi

[Y
(t)
i − α(A

(t)
Y )T (A

(t)
Y Y

(t)
i − Z

(t)
Y,i)].

In the above expression, α is the step size, which is chosen either
as a constant 1/λmax((A

(t)
Y )TA

(t)
Y ), or by using some line search

1To find such smallest eigenvalue, we can find the largest eigenvalue of
ηI−T , using algorithms such as the power method [20], where η is sufficient
large based on τ and ∥Z∥F .
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Fig. 1. The convergence behaviors of different SymNMF solvers on both synthetic and real data sets and local optimality condition check.

procedure [19]; for a given vector w , ProjYi
[w] denotes the

projection of it to the feasible set of Yi, which can be evaluated
in closed-form [21, pp. 80]

w+ = Proj+(w) , max{w,0K×1}, (23)

Yi = Proj∥w+∥22≤τ (w
+) ,

√
τw+/max{

√
τ , ∥w+∥2}. (24)

We comment that other algorithms such as the accelerated
version of the gradient projection [22] can also be used to solve the
subproblem (22). Here we pick GP for its simplicity.

4.2. The X-Subproblem
The subproblem for updating X(t+1) in (7) is equivalent to the
following problem

min
X
∥Z(t+1)

X −XA
(t+1)
X ∥2F (25)

where Z
(t+1)
X , ZY(t+1) + Λ(t) + ρY(t+1) and A

(t+1)
X ,

(Y(t+1))TY(t+1) + ρI are two fixed matrices. This is just a
least-squares problem and can be solved in closed-form. The
solution is given by X(t+1) = Z

(t+1)
X (A

(t+1)
X )−1. We remark that

the A
(t+1)
X is a K ×K matrix, where K is usually small (e.g., the

number of clusters for graph clustering applications). As a result, the
matrix inversion of A(t+1)

X is computationally cheap.

5. NUMERICAL RESULTS

In this section we present the performance of the proposed
NS-SymNMF algorithm, compare it with other existing algorithms,
and test it on problems such as community detection.

Synthetic Data Set (Random Symmetric Matrices): We randomly
generate a nonnegative matrix M with i.i.d. Gaussian entries. We
then generate Z = MMT as the given matrix to be decomposed.

Real Data Set (An Adjacency Matrix): We also implement the
algorithm on a real data set in a clustering application. The data were
collected by Facebook from survey participants [23]. The vertices
(xi, i = 1, . . . , N ) represent different individuals, and edges denote
the relationship between friends on Facebook. If two individuals
(e.g., xi, xj) are friends, then S′

i,j = 1. Otherwise, we set S′
i,j = 0.

The network has 333 nodes and 5374 edges after data cleansing such
that the degree of each node is greater than 1. Since there is no
ground truth, a quantity called modularity [24] is adopted to measure
the strength of division of the network.

The convergence behaviors of NS-SymNMF and other existing
SymNMF solvers based on the synthetic data are shown in
Figure 1(a) where the size of M is 50 × 4, K = 4, and the results
are averaged over 100 Monte Carlo (MC) trials. The results with

Facebook data are shown in Figure 1(b) where there are K = 18
communities considered. All tests are performed using Matlab on a
computer with Intel Core i3-2350M CPU running at 2.30GHz with
4GB RAM. The step size of PGD is 1×10−3. For NS-SymNMF, we
let τ = 2∥Z∥F and the maximum number of iterations of GP be 40.
Also we only update β(t) once every 100 iterations for saving the
CPU time, and gradually increase the value of ρ from an initial value
(ρ = 20) with ρ ← 1.01ρ to meet condition (10) for accelerating
the convergence rate [13, Section 3.4.1]. In Figure 1(a), it can be
observed that NS-SymNMF and SNMF [4] can achieve the global
optimal solution with a short time. In Figure 1(b), we can see that
there is a constant gap between SNMF and the rest of methods, since
the SNMF algorithm transforms the original problem to another one
under the assumption that Z can be exactly decomposed by XXT .
Levering the dual update for X and Y, NS-SymNMF also shows
a faster convergence rate and lower objective value than ANLS [1]
which only adds certain penalty term for the difference between
the factors (X and Y). The drawbacks of PGD [6], PNewton [6]
and CD [7] compared with NS-SymNMF are as follows. There is
no rule of choosing the step-size of the PGD algorithm because of
the unboundness of Lipschitz continuous gradient. PNewton has
high per-iteration complexity due to the requirement of computing
the Hessian matrix at each iteration. CD method updates each
entry of X cyclicly such that the objective function can be only
decreased locally by the updating entry at a time. Also, CD
cannot be implemented in a parallel way. From the modularity
result depicted in Figure 1(c), it can be observed that the proposed
algorithm gives an accurate decomposition more quickly compared
with other algorithms.

After the NS-SymNMF algorithm is converged, the optimality
can be checked according to Theorem 4. To find an appropriate δ
that satisfies the condition λmin(T ) > 0, we initialize δ as 1 and
decrease it by 0.01 each time and check the minimum eigenvalue of
T . The satisfiability results are shown in Figure 1(d) based on 100
MC trials for the synthetic data set where the size of M is 500×6 and
K = 4. There always exists a δ such that T is positive definite in all
cases that we have tested. This indicates that (with high probability)
the proposed algorithm finds a locally optimal solution.

6. CONCLUSIONS

In this paper, we propose a nonconvex splitting algorithm for solving
the SymNMF problem. We show that the proposed algorithm
converges to the set of KKT points in a sublinear manner. Further,
we provide sufficient conditions to identify global or local optimal
solutions of the SymNMF problem. Numerical experiments show
that the proposed method can converge quickly to local optimal
solutions.
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