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ABSTRACT

Linear discriminant analysis (LDA) is typically carried out us-
ing Fisher’s method, which relies heavily on the estimation of
sample mean vectors and covariance matrices. However, Fisher
LDA is vulnerable to outliers as it happens to other multivariate
statistical methods. In this paper, we analyzed the optimal
discriminant design based on the criterion of minimizing total
misclassification rate, assuming that the projected samples
follow Laplacian distribution. The corresponding optimization
objective can be approximated as a linear programming prob-
lem. We illustrated the relations of our proposed discriminant
to Fisher LDA and minimax probability machine (MPM) from
the perspective of projection-pursuit. Experiments on 6 real
world benchmark dataset from UCI repository validate the
effectiveness of our method.

Keywords—Linear discriminant analysis (LDA), Laplacian dis-
tribution, Minimax probability machine (MPM).

I. INTRODUCTION

Linear discriminant analysis (LDA) methods seek to find a
projection vector (or discriminant) that yields optimal discrim-
ination between distinct groups (or classes) of observations
[1]. Among them, the most popular one is Fisher LDA [2].
The basic idea of Fisher LDA is to project all the samples
into a lower dimensional space that maximizes the between-
class separability while minimizing their within-class variabil-
ity. However, Fisher’s method is vulnerable to outliers as it
happens to other multivariate statistical methods [3].

To handle this, vast of efforts have been made on robust
LDA in the last decades, mostly for binary classification.
Early works focused on replacing sample mean vectors and
pooled sample covariance matrix with their robust counterparts
(normally called “plug-in method”) [4], [5]. Recent works
paid more attentions on projection-pursuit (PP) approach,
which is initiated in [6] and further developed in [7], [8]. In
general, PP techniques search for low-dimensional projections
of higher-dimensional data where an objective function called
projection index (PI) is maximized [7]. Other relevant works
for robust LDA attempt to optimize misclassification rate under
worst-case scenario. [9], [10] proposed minimax probability
machine (MPM) to find the discriminant that can maximize the
probability of correct classification in the worst-case setting.
On the other hand, by explicitly incorporating a model of data
uncertainty in a classification problem, [11] also developed
a robust Fisher LDA model which can be carried out using
convex optimization.

In this paper, we firstly analyzed the optimal discriminant
design based the criterion of minimizing total misclassification
rate, assuming that the projected samples follow Laplacian
distribution1. After that, we presented a novel robust LDA
method and also illustrated its connections to Fisher LDA and
MPM from the PP perspective.

The rest of this paper is organized as follows. In section
II, we briefly reviewed related works on LDA and its robus-
tification. In section III, we proposed a novel robust LDA
method and discussed the corresponding optimization problem.
Following that, we illustrated the connections between our
method with Fisher LDA and MPM. Section IV presented
experimental comparison between our method, standard LDA
and MPM, using 6 real world benchmark dataset from UCI
repository. This paper is concluded in section V.

II. BACKGROUNDS

Before discussing our method, we gave a short review on
some related backgrounds. Throughout this paper, we only
consider samples coming from two pre-specified classes (or
populations).

II-A. Fisher LDA for binary classification

Fisher LDA finds a linear discriminant that yields optimal
discrimination between two classes [1]. Suppose a dataset X
is given for which each sample x ∈ RD either x ∈ C1 or
x ∈ C2, where Ci(i = 1, 2) denotes a class. Then for a
linear discriminant characterized by w ∈ Rn, the degree of
discrimination is measured by the Fisher discriminant ratio:

J (w) =
wT (µ2 − µ1)(µ2 − µ1)

Tw

wT (Σ1 + Σ2)w

=
(wTµ2 −wTµ1)

2

wT (Σ1 + Σ2)w
(1)

where µ1 and Σ1 (µ2 and Σ2) denote the mean and covariance
matrix of classes C1 and C2.

A discriminant that maximizes (1) is thus given by:

w = (Σ1 + Σ2)
−1(µ1 + µ2) (2)

Having found a discriminant w, the linear discriminant
procedure for any new x is as follows:
a) classify x into C1 if wTx ≥ γ

1The reasons behind the choice of Laplacian is elaborated in III-A
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b) classify x into C2 if wTx < γ
where γ is an estimated cutoff point (for Fisher LDA, it is the
midpoint of two means). In practice, µ1, µ2, Σ1 and Σ2 are
unknown and estimated from given samples. Thus Fisher LDA
is highly vulnerable to problem data or small data size.

II-B. Robust LDA with Projection-pursuit (PP) approach-
es

The pioneering works on multivariate statistics using PP
approaches was initiated in [7], [8]. The most promising
advantage of PP approaches lies in their capability to overcome
the so called “curse of dimensionality” [12]. In general, PP
techniques search for low-dimensional projections of higher-
dimensional data where the projection index (PI) is maximized
[3], [7].

Recalling the problem of robust LDA, one representative PI
was proposed in [13]:

I1(w) =
|L(wTX1)− L(wTX2)|

S(wTX1,wTX2)
(3)

where L(·) denotes location estimator, S(·) is a dispersion (or
scale) estimator, and X1 = {xn, n ∈ C1} (X2 = {xn, n ∈
C2}) contains all the training samples in class C1 (C2).

Another well-known PI is the squared standardized distance
between the projected observations of the two classes (i.e., in
the Fisher sense):

I2(w) =
(L(wTX1)− L(wTX2))

2

θS2(wTX1) + (1− θ)S2(wTX2)
(4)

where L(·) and S(·) have the same meaning as in (3), θ is the
prior probability of one class.

In fact, L(·) and S(·) can have different pairs of choices. It
is not difficult to find that when L(·) and S(·) are sample mean
and sample standard deviation, Fisher’s solution is obtained in
(4). Review works on performance comparison of different
pairs of L(·) and S(·) are available in [14], [13].

II-C. Minimax probability machine (MPM)

MPM [9], [10] is the workhorse of robust LDA considering
worst-case scenarios. Under MPM framework, for all possible
choices of class-conditional densities with given mean and
covariance matrix, the worst-case (maximum) misclassification
rate of future data is minimized. This can be formulated as:

max
α,w 6=0,γ

α (5)

s.t. inf
x∼(µ1,Σ1)

P (wTx ≥ γ) ≥ α

inf
x∼(µ2,Σ2)

P (wTx ≤ γ) ≥ α

Following the results in [15], it can be proved that the
optimization problem (5) is equivalent to:

min
w

√
wTΣ1w +

√
wTΣ2w (6)

s.t. wT (µ1 − µ2) = 1

The optimization problem (6) is a convex optimization prob-
lem, more precisely a second order cone programm [16].

Fig. 1: An analogy for projected distribution of two classes.

III. ROBUST LINEAR DISCRIMINANT ANALYSIS

In this section, we elaborated the reasons behind the choice
of Laplacian distribution. After that, a novel robust LDA using
Laplacian assumption is presented.

III-A. Why Laplacian

The main reasons for the selection of Laplacian distribution
are threefold: 1) Regarding distribution of linear projection
RD 7→ Rd (d < D), [17] pointed out the projected distribu-
tion is close to a single Gaussian under suitable conditions
when d = 1. This conclusion was later questioned by [18],
which mathematically validated the fact that almost all linear
projections look like a scale-mixture of spherical Gaussians
(this reduces to scale-mixture of Gaussians for d = 1), if
the coefficient of eccentricity is small; 2) It is not difficult
to prove that the standard exponential power of family is a
subset of the classes of scale-mixture of Gaussians (see [19],
[20]); and 3) Within the exponential power of family, Laplacian
distribution has the simplest formulation and the definite
integral of Laplacian distribution has explicit expression on
its parameters [21], which makes it computationally tractable.

III-B. Optimal LDA for Laplacian projected data

Suppose projected samples y = wTx that come from two
Laplacian distributions are characterized by parameters (θ1, φ1)
and (θ2, φ2) (see Fig.1):

f1(y|θ1, φ1) =
1

2φ1
exp

(
−|y − θ1|

φ1

)
(7)

f2(y|θ2, φ2) =
1

2φ2
exp

(
−|y − θ2|

φ2

)
(8)

where θ ∈ (−∞,+∞) and φ > 0 are location and scale
parameters, respectively. Then the optimal cutoff point γ∗
satisfies:

f1(γ∗|θ1, φ1) = f2(γ∗|θ2, φ2) (9)

Assuming θ2 > θ1, with straightforward simplification, γ∗ is
given by:

γ∗ =
φ1φ2 ln(φ2/φ1) + φ2θ1 + φ1θ2

φ1 + φ2
. (10)
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The misclassification probability P can be represented as:

P =
1

2

(∫ +∞

γ∗

f1(y)dy +

∫ γ∗

−∞
f2(y)dy

)
=

1

2

[
1

2
exp

(
θ1 − γ∗
φ1

)
+

1

2
exp

(
γ∗ − θ2
φ2

)]
.(11)

Combining (10) and (11), we have:

P =
1

4

[(
(φ1/φ2)

φ2
φ1+φ2 + (φ2/φ1)

φ1
φ1+φ2

)
exp

(
θ1 − θ2
φ1 + φ2

)]
. (12)

Since the maximum likelihood (ML) estimator θ̂k(k = 1, 2)
to θk is sample median (Med) and the ML estimator φ̂k(k =
1, 2) to φk is mean absolute deviation (MAD) [22]:

φ̂k =
1

Nk

N∑
n∈Ck

|wTxn − θ̂k|, k = 1, 2. (13)

The optimal discriminant criterion can be formulated direct-
ly:

min
w

(
(φ̂1/φ̂2)

φ̂2
φ̂1+φ̂2 + (φ̂2/φ̂1)

φ̂1
φ̂1+φ̂2

)
exp

(
θ̂1 − θ̂2
φ̂1 + φ̂2

)
(14)

s.t. θ̂k =Med(wTxn, n ∈ Ck), k = 1, 2.

φ̂k =
1

Nk

N∑
n∈Ck

|wTxn − θ̂k|, k = 1, 2.

As can be seen, the estimation of sample mean and sample
standard deviation in Fisher LDA is substituted with sample
Med and MAD in (14). Compared with sample mean and
standard deviation, the sample Med and MAD are relatively
less sensitive to tail behavior of error distributions or outliers
[23], [24], which immediately brings the benefits of robustness.
Unfortunately, the objective (14) is difficult to solve. In the
next section, we show that (14) can be approximated with a
linear programming problem.

III-C. Approximation and solution to robust LDA

Regarding the term (φ1/φ2)
φ2

φ1+φ2 +(φ2/φ1)
φ1

φ1+φ2 in (12),
it is easy to prove and visually demonstrate that

1 < (φ1/φ2)
φ2

φ1+φ2 + (φ2/φ1)
φ1

φ1+φ2 ≤ 2 (15)

As an approximation, it is reasonable to assume that the term
exp

(
θ1−θ2
φ1+φ2

)
dominates misclassification probability P. (14)

is thus reduced to:

max
w

∣∣∣θ̂1 − θ̂2∣∣∣
φ̂1 + φ̂2

(16)

s.t. θ̂k =Med(wTxn, n ∈ Ck), k = 1, 2.

φ̂k =
1

Nk

Nk∑
n∈Ck

|wTxn − θ̂k|, k = 1, 2.

However, the objective (16) with respect to w is not differ-
entiable, which makes it still difficult to be solved. To tackle
this, we further approximate θ̂k with wTMed(xn, n ∈ Ck) =
wTmk(k = 1, 2), where the i-th element of mk is the median
of {xni, n ∈ Ck}, and xni is the i-th element of xn. Finally
the optimization problem (16) goes down to:

max
w

∣∣wTm1 −wTm2

∣∣
1
N1

∑N1

n∈C1 |w
Txn −wTm1|+ 1

N2

∑N2

n∈C2 |w
Txn −wTm2|

which is equivalent to:

min
w

1

N1

N1∑
n∈C1

|wTxn −wTm1|+
1

N2

N2∑
n∈C2

|wTxn −wTm2|

(17)
s.t. wT (m1 −m2) = 1

Obviously, (17) can be formulated as a linear programming
problem [16]:

min
w

1

N1

N1∑
n∈C1

sn +
1

N2

N1∑
n∈C2

sn (18)

s.t. wT (m1 −m2) = 1

wT (xn −m1) ≤ sn, n ∈ C1
−wT (xn −m1) ≤ sn, n ∈ C1
wT (xn −m2) ≤ sn, n ∈ C2
−wT (xn −m2) ≤ sn, n ∈ C2

III-D. Relations to Fisher LDA and MPM

Fisher LDA involves solving the following problem:

max
w
JFisher(w) =

|wTµ2 −wTµ1|√
wTΣ1w +wTΣ2w

(19)

On the other hand, the discriminants of MPM and our
proposed robust LDA are obtained by solving (20) and (21):

max
w
JMPM (w) =

|wTµ2 −wTµ1|√
wTΣ1w +

√
wTΣ2w

(20)

max
w
Jours(w) =

|wTMed(X2)−wTMed(X1)|
MAD(wTX1) +MAD(wTX2)

(21)

As can be seen, both MPM and our method share a common
PI of the following form:

I3(w) =
|L(wTX1)− L(wTX2)|
S(wTX1) + S(wTX2)

(22)

where L(·) and S(·) denote location estimator and dispersion
estimator respectively, as in (3) and (4). On the other hand,
the PI of Fisher LDA can be represented as:

I4(w) =
|L(wTX1)− L(wTX2)|√
S2(wTX1) + S2(wTX2)

(23)

Generally, Fisher LDA, MPM and our discriminant all involve
seeking an optimal w∗ with which we can have a good
separation between the two projected sets wTX1 and wTX2
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Fig. 2: Classification accuracy for Ionosphere, Pima and Wholesale benchmarks versus size of the training set. The dashed line represents our
RLDA-L results, the solid line is the LDA results and the dash-dot line denotes MPM results. The vertical bars represent the standard errors.

with small dispersions, yet the selected local and dispersion
estimators are different for our method and MPM, and the way
in which the sample mean and sample variance are combined
is also different for MPM and Fisher LDA.

IV. EXPERIMENTS

In this section, we evaluate and compare the performance
of our proposed robust LDA with a Laplacian assumption
(RLDA-L, for short) with two benchmark methods, i.e., LDA
and MPM. To this end, 6 benchmark binary classification
dataset from UCI repository, i.e., Ionosphere, Magic, Pima,
Skin, Vertebral and Wholesale, are selected. Each set is ran-
domly partitioned into 90% training and 10% testing as con-
ducted in [9], [10], [25] (except for Magic and Skin, where only
100 samples from each class are used for training). Ensemble
average results over 50 random partitions are reported in Table
I. It is well known that a larger training set typically provides
better testing performance. Denote α the size of training set,
as a fraction of the total number of samples (for example,
α = 0.3 means that each dataset is randomly partitioned into
30% training and 70% testing). To test the robustness (or
coherence), we repeat the same experimental procedure for
each set, except that only 10% data is used for training. The
corresponding results are listed in Table II. As can be seen, the
performance of RLDA-L and MPM is consistently better than
LDA. This phenomena confirmed the widely existence of non-
Gaussian projections in real world as well as the feasibility of
our projection assumption. Furthermore, it is interesting to find
that the MPM can achieve extremely good results (even 100%)
given enough training samples. However, The advantages of
MPM does not exist as the training set become smaller.

To further verify this, we change the value of α within a
reasonable range as conducted in [11], and test the performance
of all the methods on Ionosphere, Pima and Wholesale. Fig.2
summarizes the classification results. For each of the tested
methods, and for each value of α, we plot the average
classification accuracy as well as the standard errors of mean.
As can be expected, apart from sensitivity to small training
data size, another drawback for MPM lies in its large variance.
Compared with MPM, the performance of RLDA-L is much
more stable.

Table I: Classification accuracy on UCI real data (α = 90%).

RLDA-L LDA MPM
Ionosphere (%) 82.17 (5.90) 85.77 (4.91) 100 (0)
Magic (%) 75.06 (2.10) 77.20 (0.96) 78.76 (2.93)
Pima (%) 72.08 (4.27) 68.70 (5.18) 100 (0)
Skin (%) 94.19 (0.26) 93.60 (0.55) 91.99 (4.09)
Vertebral (%) 73.48 (8.48) 72.13 (8.39) 100 (0)
Wholesale (%) 89.64 (3.71) 85.23 (5.22) 100 (0)

Table II: Classification accuracy on UCI real data (α = 10%).

RLDA-L LDA MPM
Ionosphere (%) 73.10 (4.39) 69.11 (5.38) 83.33 (25.99)
Magic (%) 75.06 (2.10) 77.20 (0.96) 78.76 (2.93)
Pima (%) 70.61 (3.28) 63.68 (2.97) 69.10 (5.57)
Skin (%) 94.19 (0.26) 93.60 (0.55) 91.99 (4.09)
Vertebral (%) 68.22 (5.41) 67.14 (4.07) 70.10 (7.70)
Wholesale (%) 86.12 (5.38) 84.45 (4.08) 85.20 (4.82)

V. CONCLUSIONS AND FUTURE WORKS

We present a novel robust LDA method assuming Laplacian
distributions for projected samples. Under this assumption, the
optimal discriminant is investigated. In addition, we show that
the proposed method can be carried out using linear program-
ming, making implementation very convenient. Experiments
validate the effectiveness of our method compared with other
benchmarks.

Besides, the proposed method has several interesting impli-
cations and extensions: a) unlike majority of previous works
using prior knowledge on class-conditional distribution (e.g.
[26]), we demonstrate the feasibility of making assumptions
on projection distribution; b) it is particularly interesting to
find that our method share the same projection index with
MPM, given that the two methods are derived from different
theoretical perspectives; c) the proposed method can be easily
extended for feature selection with `1 penalty2.

2This can be done by adding `1 penalty on w in (18). Again, the new
objective can be formulated as a linear programming problem. According to
our experimental results (not shown in the paper), the performance of feature
selection is satisfactory.

2570



VI. REFERENCES

[1] C. M. Bishop et al., Pattern recognition and machine
learning. springer New York, 2006, vol. 4, no. 4.

[2] R. A. Fisher, “The use of multiple measurements in
taxonomic problems,” Annals of Eugenics, vol. 7, no. 2,
pp. 179–188, 1936.

[3] A. M. Pires and J. A. Branco, “Projection-pursuit ap-
proach to robust linear discriminant analysis,” Journal of
Multivariate Analysis, vol. 101, no. 10, pp. 2464–2485,
2010.

[4] R. H. Randles, J. D. Broffitt, J. S. Ramberg, and R. V.
Hogg, “Generalized linear and quadratic discriminant
functions using robust estimates,” Journal of the Ameri-
can Statistical Association, vol. 73, no. 363, pp. 564–568,
1978.

[5] D. M. Hawkins and G. J. McLachlan, “High-breakdown
linear discriminant analysis,” Journal of the American
Statistical Association, vol. 92, no. 437, pp. 136–143,
1997.

[6] J. H. Friedman and J. W. Tukey, “A projection pursuit
algorithm for exploratory data analysis,” 1974.

[7] P. J. Huber, “Projection pursuit,” The Annals of Statistics,
pp. 435–475, 1985.

[8] G. Li and Z. Chen, “Projection-pursuit approach to robust
dispersion matrices and principal components: primary
theory and monte carlo,” Journal of the American Statis-
tical Association, vol. 80, no. 391, pp. 759–766, 1985.

[9] G. R. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and
M. I. Jordan, “Minimax probability machine,” in Ad-
vances in Neural Information Processing Systems, 2001,
pp. 801–807.

[10] ——, “A robust minimax approach to classification,” The
Journal of Machine Learning Research, vol. 3, pp. 555–
582, 2003.

[11] S.-J. Kim, A. Magnani, and S. Boyd, “Robust fisher
discriminant analysis,” in Advances in Neural Information
Processing Systems, 2005, pp. 659–666.

[12] A. Pires, “Robust linear discriminant analysis and the
projection pursuit approach,” in Developments in Robust
Statistics. Springer, 2003, pp. 317–329.

[13] Z.-Y. Chen and R. J. Muirhead, “A comparison of robust
linear discriminant procedures using projection pursuit
methods,” Lecture Notes-Monograph Series, pp. 163–
176, 1994.

[14] K. Joossens and C. Croux, “Empirical comparison of the
classification performance of robust linear and quadratic
discriminant analysis,” in Theory and applications of
recent robust methods. Springer, 2004, pp. 131–140.

[15] A. W. Marshall and I. Olkin, “Multivariate chebyshev
inequalities,” The Annals of Mathematical Statistics, pp.
1001–1014, 1960.

[16] S. Boyd and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[17] P. Diaconis and D. Freedman, “Asymptotics of graphical
projection pursuit,” The Annals of Statistics, pp. 793–815,
1984.

[18] S. Dasgupta, D. Hsu, and N. Verma, “A concentration
theorem for projections,” in Twenty-Second Conference
on Uncertainty in Artificial Intelligence (UAI), 2006.

[19] T. Eltoft, T. Kim, and T.-W. Lee, “On the multivariate

laplace distribution,” Signal Processing Letters, IEEE,
vol. 13, no. 5, pp. 300–303, 2006.

[20] M. West, “On scale mixtures of normal distributions,”
Biometrika, vol. 74, no. 3, pp. 646–648, 1987.

[21] G. Casella and R. L. Berger, Statistical inference.
Duxbury Pacific Grove, CA, 2002, vol. 2.

[22] A. Childs and N. Balakrishnan, “Maximum likelihood
estimation of laplace parameters based on general type-ii
censored examples,” Statistical Papers, vol. 38, no. 3, pp.
343–349, 1997.

[23] M. Svensén and C. M. Bishop, “Robust bayesian mixture
modelling,” Neurocomputing, vol. 64, pp. 235–252, 2005.

[24] P. J. Huber, Robust statistics. Springer, 2011.
[25] K. Huang, H. Yang, I. King, M. R. Lyu, and L. Chan,

“The minimum error minimax probability machine,” The
Journal of Machine Learning Research, vol. 5, pp. 1253–
1286, 2004.

[26] T. W. Anderson and R. Bahadur, “Classification into
two multivariate normal distributions with different co-
variance matrices,” Annals of Mathematical Statistics,
vol. 33, no. 2, pp. 420–431, 1962.

2571


