
A UNIFIED CONVERGENCE ANALYSIS OF THE MULTIPLICATIVE UPDATE
ALGORITHM FOR NONNEGATIVE MATRIX FACTORIZATION

Renbo Zhao, Vincent Y. F. Tan

Department of Electrical and Computer Engineering & Department of Mathematics,
National University of Singapore

ABSTRACT

The multiplicative update (MU) algorithm has been used extensively
to estimate the basis and coefficient matrices in nonnegative matrix
factorization (NMF) problems under a wide range of divergences
and regularizations. However, theoretical convergence guarantees
have only been derived for a few special divergences. In this work,
we provide a conceptually simple, self-contained, and unified proof
for the convergence of the MU algorithm applied on NMF with a
wide range of divergences and regularizations. Our result shows the
sequence of iterates (i.e., pairs of basis and coefficient matrices) pro-
duced by the MU algorithm converges to the set of stationary points
of the NMF (optimization) problem. Our proof strategy has the po-
tential to open up new avenues for analyzing similar problems.

Index Terms— Nonnegative Matrix Factorization, Multiplica-
tive Update Algorithm, Convergence Analysis, Nonconvex Opti-
mization, Stationary Points

1. INTRODUCTION

Nonnegative Matrix Factorization (NMF) has been a popular dimen-
sionality reduction technique, due to its non-subtractive and parts-
based interpretation on the learned basis [1]. In the general formula-
tion of NMF, given a nonnegative matrix V ∈ RF×N+ , one seeks a
nonnegative basis matrix W ∈ RF×K+ and a nonnegative coefficient
matrix H ∈ RK×N+ such that V ≈WH. One usually solves

min
W≥0,H≥0

[
`(W,H) , D(V‖WH)

]
. (1)

In (1), D(·‖·) denotes the divergence, or distance, between two non-
negative matrices. In the NMF literature, many algorithms have
been proposed to solve (1), including multiplicative updates (MU)
[2,3], block principal pivoting (BPP) [4], projected gradient descent
(PGD) [5], active set methods (ASM) [6] and the alternating di-
rection method of multipliers (ADMM) [7]. However, some algo-
rithms only solve (1) for certain divergences D(·‖·). For example,
the BPP and ASM algorithms are only applicable to the squared-
Frobenius loss. Among all algorithms, the MU algorithm is arguably
the most widely applicable—it has been applied to NMF with the α-
divergence [8], the β-divergence [3], the γ-divergence [9], the αβ-
divergence [10], etc. However, despite its popularity and wide ap-
plicability, it is largely an heuristic algorithm in the sense that little
of its convergence properties is known. In particular, most works
[2,3,8] show that the sequence of objective values {`(Wt,Ht)}∞t=1
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in the MU algorithm is nonincreasing and hence converges. How-
ever, the convergence of objective values does not imply the conver-
gence of the sequence of matrix pairs {(Wt,Ht)}∞t=1, whose limit
points (if they exist) serve as candidates for the output of the MU
algorithm. Moreover, when the MU algorithm is used on real appli-
cations, such as music analysis [11], topic modeling [1] and source
separation [8], the limit points of {(Wt,Ht)}∞t=1 are meaningful
and representative of the latent factors. Thus, the convergence prop-
erties of {(Wt,Ht)}∞t=1, and in particular the properties of its limit
points, are of fundamental importance.

1.1. Related Works
Due to the nonconvex nature of (1), algorithms that guarantee to
converge to the global (or local) minima of (1) are in general out-
of-reach. Indeed, [12] has shown that (1) is NP-hard. Thus existing
works mainly study convergence to the stationary points (see Def-
inition 3) of (1).1 For the MU algorithm, some previous works on
its convergence include [15–17]. For simplicity, all of the MU al-
gorithms in these works only consider a special case of (1), namely
D(V‖WH) = 1

2
‖V −WH‖2F . In particular, a principled and

rigorous analysis was performed in [15]. In [15], Lin modifies the
MU algorithm proposed in [2], and shows the sequence of iterates
{(Wt,Ht)}∞t=1 generated by this algorithm converges to the set of
stationary points2 of (1). Later, the authors of [16] and [17] propose
different modifications of the MU algorithm in [2] and then pro-
vide sound convergence analyses accordingly. In another interesting
research direction, [18] studies the stability of local minima of (1)
under the MU algorithm, when D(·‖·) belongs to the family of β-
divergences. However, it cannot resolve whether (and when) the MU
algorithm converges to any local minimum of `(·, ·). For other al-
gorithms that aim to solve (1), some rigorous convergence analyses
have been done in [19–21]. However, all of the analyses are confined
to some special cases of D(·‖·), including the Itakura-Saito (IS),
(generalized) Kullback-Leibler (KL) or squared-Frobenius losses.

1.2. Challenges and Main Contributions
Despite the rigorous analyses in previous works [15–17], some im-
portant questions still remain unresolved:

1. Is convergence analysis possible for the MU algorithm when
D(·‖·) is not the squared-Frobenius loss?

2. In addition, is convergence analysis possible for the MU algo-
rithm when the loss function `(·, ·) also includes regularizers?

1Under certain assumptions on the data matrix V, e.g., the separability
conditions proposed in [13], polynomial-time algorithms for exact NMF have
been proposed, e.g., [14]. However, in most applications in signal process-
ing and machine learning, V is contaminated by noise, thereby making the
assumptions leveraged in these works invalid.

2See Definition 4 for the definition of convergence of a sequence to a set.
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3. Furthermore, instead of a case-by-case study, is a unified con-
vergence analysis possible?

These questions naturally arise due to the importance of utilizing
h-divergences and regularizers in various applications. Indeed, in
many practical applications, the objective function (1) is not the
squared-Frobenius loss. For example, the IS divergence is used in
music analysis [11] and the KL divergence is often used in topic
learning [1]. The use of such divergences can be justified from both
theoretical (i.e., maximum likelihood considerations) and practical
viewpoints. For details, see [11, 22]. In addition, to enhance the in-
terpretability of the learned dictionary and coefficient matrices, regu-
larizers on W and/or H are typically employed. For example, the `1
regularization on columns of H promotes sparsity on the columns,
hence each data sample (a column of V) can be represented parsi-
moniously by a subset of feature vectors (columns of W).

The above questions cannot be addressed by straightforward
generalizations of the analysis techniques in [15–17]. Therefore,
in this work, based on the block majorization-minimization frame-
work [23,24], we propose a unified convergence analysis for the MU
algorithm when `(·, ·) includes both h-divergences and regularizers.
We show that the sequence of iterates {(Wt,Ht)}∞t=1 has at least
one limit point and any limit point of this sequence is a stationary
point of (1). We leverage the regularity properties of both the objec-
tive and surrogate functions.3 In particular, the surrogate functions
of interest to us here are termed first-order surrogate functions.
Thus, as a side contribution, we also provide a principled and sys-
tematic way to construct first-order surrogate functions. Moreover,
we also provide a theoretical justification of a popular heuristic,
which involves adding a small positive constant to the denominator
of the multiplicative factor. This heuristic not only preserves the
numerical stability, but also ensures the joint coercivity of the loss
function `(·, ·). As a result, the existence of the limit point(s) of
{(Wt,Ht)}∞t=1 can be proved.

1.3. Notations

In this paper we use R+, R++ and N to denote the set of nonnegative
real numbers, positive real numbers and natural numbers (exclud-
ing zero) respectively. For n ∈ N, we define [n] , {1, 2, . . . , n}.
We use boldface capital letters, boldface lowercase letters and plain
lowercase letters to denote matrices, vectors and scalars respectively.
For a vector x, we denote its i-th entry, `1 and `2 norms as xi, ‖x‖1
and ‖x‖2 respectively. For a matrix X, we denote its (i, j)-th entry
as xij and its `1,1 norm as ‖X‖1,1 ,

∑
i ‖xi‖1. In addition, we

use X = 0 and X ≥ 0 to denote entrywise zero and nonnegativity.
For matrices X and Y, we use X �Y and 〈X,Y〉 to denote their
Hadamard product and Frobenius inner product respectively. We use
c
= to denote equality up to additive constants.

2. PROBLEM FORMULATION

2.1. Definition of h-Divergences

Before introducing the notion of h-divergences, we first define an
important function

h(ν, t) ,

{
(νt − 1)/t, t ∈ R \ {0}

log ν, t = 0
, ν ∈ R++. (2)

3Informally, a surrogate function is a function that upper bounds the orig-
inal function and is tight at some point(s) in the domain. See Definition 2 for
a precise definition.

Definition 1 (h-divergences; [25]). Given any V ∈ RF×N+ , a diver-
gence D(V‖·) : RF×N+ → R+ is called a h-divergence if for any
V̂ ∈ RF×N+ , there exist a constant P ∈ N \ {1}, such that

D(V‖V̂)
c
=

P∑
p=1

µph

(
F∑
i=1

N∑
j=1

νpijh(v̂ij , ζp), ξp

)
, (3)

where ‘ c
=’ omits constants that are independent of V̂ and µp, νpij , ζp

and ξp are all real constants independent of V̂. Moreover, {ζp}Pp=1

are distinct.

Remark 1. First, note that the h-divergences include many important
classes of divergences, including the families of α (α 6= 0), β, γ,
α-β and Rényi divergences.4 All of these divergences have been
applied in the NMF literature [3,8–10,27]. Second, when µp = ξp =

1, for any p ∈ [P ], D(V‖·) is separable across the entries of V̂, i.e.,
D(V‖V̂)

c
=
∑F
i=1

∑N
j=1

∑P
p=1 νpijh(v̂ij , ζp). In the sequel, we

term such a divergence as separable h-divergence. In particular, any
member in the families of α (α 6= 0) or β-divergences is separable.
For example, taking P = 2, ν1ij = −vij , ζ1 = 0, ν2ij = 1 and
ζ2 = 1, we obtain the KL divergence, which belongs to both the α-
and β-divergence families.

2.2. Optimization Problem

We focus on the following optimization problem

min
W∈RF×K

+ ,H∈RK×N
+

`(W,H), (4)

where K < min(F,N) and

`(W,H) , D(V‖WH) +

2∑
i=1

λiφi(W) +

2∑
j=1

λ̃jφj(H). (5)

In (5), V ∈ RF×N++ , {λ1, λ̃1} ⊆ R++, {λ2, λ̃2} ⊆ R+ and for any
nonnegative matrix X, φ1(X) , ‖X‖1,1 and φ2(X) , ‖X‖2F .

Remark 2. We explain why we focus on the so-called elastic-net
regularizer [28] on (W,H). This regularizer includes the `1,1 and
Tikhonov regularizers as special cases, both of which are widely
used in NMF. Specifically, the `1,1 regularizer promotes element-
wise sparsity on the basis matrix W and coefficient matrix H [29].
The Tikhonov regularizer promotes smoothness on (W,H) and also
prevents overfitting [30]. Second, the positivity of λ1 and λ̃1 orig-
inates from a commonly used heuristic in the MU algorithm that
ensures numerical stability in the updates. See Remark 4 for details.

3. ALGORITHMS

3.1. First-Order Surrogate Functions and General Framework

Definition 2. Given a finite-dimensional real Banach space X =
Πn
i=1Xi and let x , (x1, . . . , xn) ∈ X , where for any i ∈ [n],

xi ∈ Xi is the i-th block of x. Consider a differentiable function

4In particular, some important instances in the h-divergences include the
Hellinger, IS, KL and squared-Frobenius divergences. When α = 0, the cor-
responding divergence is called the dual (generalized) KL divergence. With
slight modifications of our methodology, all the propositions and theorems
in this paper will also hold for this case. See Section 5.3 in the extended
version [26] for details.

2563



f : X → R. For any i ∈ [n], a first-order surrogate function of f
for the i-th block xi, Fi(· | ·) : Xi ×X → R satisfies

(P1) Fi(x̃i | x̃) = f(x̃), for any x̃ ∈ X ,

(P2) Fi(xi | x̃) ≥ f(x̃1, . . . , xi, . . . , x̃n), for any (xi, x̃)∈Xi×X .

(P3) Fi(· | ·) is differentiable on Xi ×X and for any x̃ ∈ X , there
exists a function g(· | x̃) : Xi → R such that∇xiFi(xi | x̃) =
g(xi/x̃i | x̃), for any xi ∈ Xi,

(P4) ∇xiFi(x̃i | x̃) = ∇f(x̃), for any x̃ ∈ X ,

(P5) Fi(· | x̃) is strictly convex on Xi, for any x̃ ∈ X .

If Fi(· | ·) only satisfies (P1) to (P3), it is called a surrogate function
of f for xi.

Remark 3. We now explain the implications of the five properties in
Definition 2. First define

x∗i , arg min
xi∈Xi

Fi(xi|x̃), (6)

where the uniqueness of the minimizer in (6) is guaranteed by (P5).
Moreover, define x∗ , (x̃1, . . . , x

∗
i , . . . , x̃n), then (P1) and (P2)

together ensure f(x∗) ≤ f(x̃). (P3) ensures the minimization in (6)
yields the multiplicative update. (P4) justifies the term “first-order”,
and its implication will be seen in the proof of Theorem 1.

The framework of multiplicative updates for the h-divergences
is shown in Algorithm 1, where G1(·|·) and G2(·|·) denote the first-
order surrogate functions of ` for W and H respectively.

3.2. Construction of First-Order Surrogate Functions and
Derivation of Multiplicative Updates

Proposition 1. Let V ∈ RF×N+ and D(V‖·) be a separable h-
divergence, then there exist ζmin, ζmax ∈ R , ζmin < ζmax, such
that

G(W|W̃, H̃) ,
F∑
i=1

K∑
k=1

[
(s+ik + λ1)w̃ikh

(
wik
w̃ik

, ζmax

)
+2λ2w̃

2
ikh

(
wik
w̃ik

, ζmax

)
− s−ikw̃ikh

(
wik
w̃ik

, ζmin

)]
(7)

is a first-order surrogate function of ` for W at (W̃, H̃) up to some
additive constant (independent of W). Here S+ and S− (both in
RF×K+ ) are defined as the sums of positive and unsigned negative
terms (cf. [2]) in∇WD(V‖WH̃)

∣∣
W=W̃

respectively.

Proof Sketch. First we showG(W|W̃, H̃) is a surrogate function,
i.e., it satisfies (P1) to (P3), by constructing it using the up-merging
and down-merging techniques introduced in [25]. Indeed,5

ζmax = max{ζ′p}Pp=1 ∪ {sgn(λ1), 2 sgn(λ2)}, (8)

ζmin = min{ζ′p}Pp=1, (9)

where for all p ∈ [P ], ζ′p , 1 if ζp ∈ (0, 1) and ζ′p , ζp otherwise.
Proving (P4) involves verification of ∇WG(W|W̃, H̃)

∣∣
W=W̃

=

∇W`(W, H̃)
∣∣
W=W̃

. To show (P5), it suffices to show for any

(i, k) ∈ [F ]× [K] and W ∈ RF×K+ , ∂2

∂w2
ik
G(W|W̃, H̃) > 0. See

Section 5.1 in [26] for the detailed steps in the proof. �

5For a nonnegative scalar x, sgn(x) , 1 if x > 0 and sgn(x) , 0
otherwise.

Algorithm 1 General Framework for Multiplicative Updates
Input: Data matrix V, latent dimension K, regularization
weights {λ1, λ̃1} ⊆ R++ and {λ2, λ̃2} ⊆ R+

Initialize basis matrix W0, coefficient matrix H0 and iteration
index t := 0
Repeat

Wt+1 := arg min
W∈RF×K

+

G1(W|Wt,Ht) (11)

Ht+1 := arg min
H∈RK×N

+

G2(H|Wt+1,Ht) (12)

t := t+ 1 (13)

Until some convergence criterion is met
Output: Learned basis matrix W and coefficient matrix H

By setting∇WG(W|W̃, H̃) to zero, we obtain the correspond-
ing multiplicative updates.

Proposition 2. Let V, D(V‖·), ζmax, ζmin, S+ and S− be given
as in Proposition 1. For any (i, k) ∈ [F ] × [K], the multiplicative
update corresponding to (11) in Algorithm 1 admits the form6

wik := w̃ik

(
s−ik

s+ik + 2λ2w̃ik + λ1

)1/(ζmax−ζmin)

. (10)

Remark 4. In (10), the presence of a small λ1 > 0 ensures numer-
ical stability, i.e., it prevents division by extremely small numbers
(which may lead to numerical overflow). As a popular heuristic [10],
a small positive number is usually added to the denominator of the
multiplicative factor artificially. Here we establish the connection
between this small number and `1 regularization for separable h-
divergences, thereby theoretically justifying this heuristic.7

Next, we consider nonseparable h-divergences. By the convex-
ity (or concavity) of h(·, t), (3) is a difference-of-convex (DC) func-
tion [31]. Therefore, by using either a first-order Taylor expansion
or Jensen’s inequality, the nonseparable case can be easily converted
to the separable case. Such standard techniques are well-studied in
the literature. For details, see [25, 32].

To better illustrate our general multiplicative updates in (10), we
employ the family of α-divergences as a concrete example.8 The
details are deferred to Sections 5.2 and 5.3 in [26].

4. CONVERGENCE ANALYSIS

4.1. Preliminaries

Definition 3 (Stationary points of constrained optimization prob-
lems). Given a finite-dimensional real Banach space X , a differ-
entiable function g : X → R and a set K ⊆ X , x0 ∈ K is a sta-
tionary point of the constrained optimization problem minx∈K g(x)
if 〈∇g(x0), x− x0〉 ≥ 0, for all x ∈ K.

Define X ,
[
WT H

]
∈ RK×(F+N)

+ and with a slight abuse
of notation, we write `(X) , `(W,H). Thus by Definition 3,

6Here W̃ (resp. H̃) denotes the value of basis (resp. coefficient) matrix at
the current iteration (iteration t), and W (resp. H) denotes the value of basis
(resp. coefficient) matrix at the next iteration (iteration t+ 1).

7This connection has been observed for some special h-divergences [3,
29], but here we provide a more general and unified discussion.

8Both cases α 6= 0 and α = 0 will be discussed.
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we have that (W,H) is a stationary point of (4) if and only if〈
∇X`(X),X−X

〉
≥ 0, for any X ∈ RK×(F+N)

+ , where X ,

[W
T
H ]. In particular, this is true if〈
∇W`(W,H),W −W

〉
≥ 0, ∀W ∈ RF×K+ , (14)〈

∇H`(W,H),H−H
〉
≥ 0, ∀H ∈ RK×N+ . (15)

Remark 5. In some previous works (e.g., [15]), stationary points are
defined in terms of KKT conditions, i.e.,9

W ≥ 0, H ≥ 0 (16)

∇W`(W,H) ≥ 0, ∇H`(W,H) ≥ 0 (17)

W �∇W`(W,H) = 0, H�∇H`(W,H) = 0. (18)

Since both W and H are nonnegative, it is easy to show these three
conditions are equivalent to (14) and (15). In our analysis, we will
use (14) and (15) for convenience.

Definition 4 (Convergence of a sequence to a set). Given a finite-
dimensional real Banach space X , a sequence {xn}∞n=1 in X
is said to converge to a set A ⊆ X , denoted as xn → A, if
limn→∞ infa∈A ‖xn − a‖ = 0.

Lemma 1 ( [33]). Let X , {xn}∞n=1 and A be given in Definition 4.
xn → A if and only if every limit point of {xn}∞n=1 lies in A.

4.2. Main Result

Theorem 1. For any V ∈ RF×N+ , K ∈ N, {λ1, λ̃1} ⊆ R++ and
{λ2, λ̃2} ⊆ R+, the sequence of iterates {(Wt,Ht)}∞t=1 generated
by Algorithm 1 converges to the set of stationary points of (4).

Proof. First, by Lemma 1, it suffices to show every limit point of
{(Wt,Ht)}∞t=1 is a stationary point of (4). Since {λ1, λ̃1} ⊆ R++,
(W,H) 7→ `(W,H) is jointly coercive [33] in (W,H). In addi-
tion, the continuous differentiability of h(·, t) implies the joint con-
tinuous differentiability of (W,H) 7→ `(W,H) in (W,H). Hence

S0 ,
{

(W,H) ∈ RF×K+ × RK×N+

∣∣ `(W,H) ≤ `(W0,H0)
}

is compact. Since the sequence {`(Wt,Ht)}∞t=1 is nonincreasing,
{(Wt,Ht)}∞t=1 ⊆ S0. By the compactness of S0, {(Wt,Ht)}∞t=1

has at least one limit point. Pick any such limit point and denote it
as (W̊, H̊). For convenience, define

Zt ,


(
Wt/2,Ht/2

)
, t even(

Wbt/2c+1,Hbt/2c
)
, t odd

and Z̊ ,
(
W̊, H̊

)
.

Then there exists a subsequence
{
Ztj
}∞
j=1

that converges to Z̊ ∈ S0
and {tj}∞j=1 are all even. Moreover, there exists a subsequence of{
Ztj−1

}∞
j=1

, denoted as
{
Ztji−1

}∞
i=1

, such that Ztji−1 converges

to (possibly) some other limit point Z̊′ , (W̊′, H̊′) as i→∞.
Next we show Z̊ = Z̊′. By the update rule (12), we have

Htji/2 = arg min
H∈RK×N

+

G2

(
H|Ztji−1) , ∀ i ∈ N. (19)

9Here we use ∇W`(W,H) and ∇H`(W,H) to denote
∇W`(W,H)

∣∣
W=W

and ∇H`(W,H)
∣∣
H=H

respectively.

Thus for any i ∈ N,

G2(Htji/2|Ztji−1) ≤ G2(H|Ztji−1), ∀H ∈ RK×N+ . (20)

By (P2), we also have for any i ∈ N,

`(Ztji/2) , `(Wtji/2,Htji/2) ≤ G2(Htji/2|Ztji−1). (21)

Taking i→∞ on both sides of (20) and (21), we have

`(Z̊) ≤ G2(H̊|Z̊′) ≤ G2(H|Z̊′), ∀H ∈ RK×N+ , (22)

by the joint continuity of G2(·|·) in both arguments in (P3). Thus

H̊ = arg min
H∈RK×N

+

G2(H|Z̊′). (23)

Taking H = H̊′ in (22), we have

`(Z̊) ≤ G2(H̊|Z̊′) ≤ G2(H̊′|Z̊′) , `(Z̊′). (24)

Since {`(Zt)}∞t=1 converges (to a unique limit point), we have
`(Z̊) = `(Z̊′). This implies that `(Z̊) = G2(H̊|Z̊′). Then for any
H ∈ RK×N+ ,

G2(H̊′|Z̊′) = `(Z̊′) = `(Z̊) = G2(H̊|Z̊′) ≤ G2(H|Z̊′). (25)

This implies that
H̊′ = arg min

H∈RK×N
+

G2(H|Z̊′). (26)

Combining (23) and (26), by the strictly convexity of G2(·|Z̊′) in
(P5), H̊ = H̊′. By symmetry, we can show W̊ = W̊′, hence
Z̊ = Z̊′. Thus (25) becomes

G2(H̊|Z̊) ≤ G2(H|Z̊), ∀H ∈ RK×N+ . (27)

Now, the convexity of G2(·|Z̊) implies that〈
∇HG2(H̊|Z̊),H− H̊

〉
≥ 0, ∀H ∈ RK×N+ . (28)

From the first-order property of G2(·|Z̊) in (P4), we have〈
∇H`(W̊, H̊),H− H̊

〉
≥ 0, ∀H ∈ RK×N+ . (29)

Similarly, we also have〈
∇W`(W̊, H̊),W − W̊

〉
≥ 0, ∀W ∈ RF×K+ . (30)

The variational inequalities (29) and (30) together show that (W̊, H̊)
is a stationary point of (4). �

Remark 6. We now provide some intuitions of the proof. We first use
the positivity of λ1, λ̃1 to assert that S0 is compact. This allows us to
extract convergent subsequences. The most crucial step (27) states
that at an arbitrary limit point of {Zt}∞t=1, denoted as Z̊ = (W̊, H̊),
H̊ serves as a minimizer of G2(·|Z̊) over RK×N+ . By symmetry, W̊
also serves as a minimizer of G1(·|Z̊) over RF×K+ . In the single-
block case, this idea is fairly intuitive. However, to prove (27) in the
double-block case, we consider two subsequences {Ztji }∞i=1 and
{Ztji−1}∞i=1. In each sequence, only W or H is updated. Then
we show these two sequences converge to the same limit point. This
implies the Gauss-Seidel minimization procedure [33] in the double-
block case is essentially the same as the minimization in the single-
block case. The claim then follows immediately.

Acknowledgements: The authors would like to sincerely thank
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2565



5. REFERENCES

[1] D. D. Lee and H. S. Seung, “Learning the parts of objects by
nonnegative matrix factorization,” Nature, vol. 401, pp. 788–
791, October 1999.

[2] Daniel D. Lee and H. Sebastian Seung, “Algorithms for non-
negative matrix factorization,” in Proc. NIPS, Denver, USA,
Dec. 2000, pp. 556–562.

[3] C. Févotte and J. Idier, “Algorithms for nonnegative matrix
factorization with the beta-divergence,” Neural Comput., vol.
23, no. 9, pp. 2421–2456, 2011.

[4] Jingu Kim and Haesun Park, “Toward faster nonnegative ma-
trix factorization: A new algorithm and comparisons,” in Proc.
ICDM, Pisa, Italy, Dec. 2008, pp. 353–362.

[5] Chih-Jen Lin, “Projected gradient methods for nonnegative
matrix factorization,” Neural Comput., vol. 19, no. 10, pp.
2756–2779, Oct. 2007.

[6] Hyunsoo Kim and Haesun Park, “Nonnegative matrix fac-
torization based on alternating nonnegativity constrained least
squares and active set method,” SIAM J. Matrix Anal. A., vol.
30, no. 2, pp. 713–730, 2008.

[7] Yangyang Xu, Wotao Yin, Zaiwen Wen, and Yin Zhang, “An
alternating direction algorithm for matrix completion with non-
negative factors,” Frontiers Math. China, vol. 7, pp. 365–384,
2012.

[8] A Cichocki, H-K Lee, Y-D Kim, and S Choi, “Nonnegative
matrix factorization with alpha-divergence,” Pattern Recognit.
Lett., vol. 29, no. 9, pp. 1433–1440, 2008.

[9] A Cichocki and S Amari, “Families of Alpha-Beta-and
Gamma-divergences: Flexible and robust measures of similar-
ities,” Entropy, vol. 12, no. 6, pp. 1532–1568, 2010.

[10] Andrzej Cichocki, Sergio Cruces, and Shun-ichi Amari, “Gen-
eralized alpha-beta divergences and their application to robust
nonnegative matrix factorization,” Entropy, vol. 13, no. 1, pp.
134–170, 2011.

[11] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix
factorization with the Itakura-Saito divergence. With applica-
tion to music analysis,” Neural Comput., vol. 21, no. 3, pp.
793–830, Mar. 2009.

[12] Stephen A. Vavasis, “On the complexity of nonnegative matrix
factorization,” SIAM J. Optim., vol. 20, no. 3, pp. 1364–1377,
2009.

[13] David Donoho and Victoria Stodden, “When does non-
negative matrix factorization give correct decomposition into
parts?,” in Proc. NIPS, Vancouver, Canada, Dec. 2004, pp.
1141–1148.

[14] Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur
Moitra, “Computing a nonnegative matrix factorization – prov-
ably,” in Proc. STOC, New York, New York, USA, May 2012,
pp. 145–162.

[15] Chih-Jen Lin, “On the convergence of multiplicative update
algorithms for nonnegative matrix factorization,” IEEE Trans.
Neural Netw., vol. 18, no. 6, pp. 1589–1596, 2007.

[16] Nicolas Gillis and François Glineur, “Nonnegative
factorization and the maximum edge biclique problem,”
arXiv:0810.4225, 2008.

[17] Ryota Hibi and Norikazu Takahashi, “A modified multiplica-
tive update algorithm for euclidean distance-based nonnega-
tive matrix factorization and its global convergence,” in Proc.
ICONIP, Shanghai, China, Nov. 2011, pp. 655–662.

[18] R. Badeau, N. Bertin, and E. Vincent, “Stability analysis of
multiplicative update algorithms and application to nonnega-
tive matrix factorization,” IEEE Trans. Neural Netw., vol. 21,
no. 12, pp. 1869–1881, Dec. 2010.

[19] Hyunsoo Kim and Haesun Park, “Sparse non-negative matrix
factorizations via alternating non-negativity-constrained least
squares for microarray data analysis,” Bioinformatics, pp.
1495–1502, 2007.

[20] D. Hajinezhad, T. H. Chang, X. Wang, Q. Shi, and M. Hong,
“Nonnegative matrix factorization using admm: Algorithm and
convergence analysis,” in Proc. ICASSP, Shanghai, China,
Mar. 2016, pp. 4742–4746.

[21] C. Févotte and A. T. Cemgil, “Nonnegative matrix factoriza-
tions as probabilistic inference in composite models,” in Proc.
EUSIPCO, Glasgow, UK, Aug. 2009, pp. 1913–1917.

[22] Renbo Zhao, Vincent Y. F. Tan, and Huan Xu, “Online
nonnegative matrix factorization with general divergences,”
arXiv:1608.00075, 2016.

[23] Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo, “A
unified convergence analysis of block successive minimization
methods for nonsmooth optimization,” SIAM J. Optim., vol.
23, no. 2, pp. 1126–1153, 2013.

[24] M. Hong, M. Razaviyayn, Z. Q. Luo, and J. S. Pang, “A uni-
fied algorithmic framework for block-structured optimization
involving big data: With applications in machine learning and
signal processing,” IEEE Signal Process. Mag., vol. 33, no. 1,
pp. 57–77, Jan. 2016.

[25] Z. Yang and E. Oja, “Unified development of multiplicative
algorithms for linear and quadratic nonnegative matrix factor-
ization,” IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1878–
1891, Dec. 2011.

[26] Renbo Zhao and Vincent Y. F. Tan, “A unified convergence
analysis of the multiplicative update algorithm for nonnegative
matrix factorization,” arXiv:1609.00951, 2016.

[27] Karthik Devarajan, Guoli Wang, and Nader Ebrahimi, “A uni-
fied statistical approach to non-negative matrix factorization
and probabilistic latent semantic indexing,” Mach. Learn., vol.
99, no. 1, pp. 137–163, 2015.

[28] Hui Zou and Trevor Hastie, “Regularization and variable se-
lection via the elastic net,” J. Roy. Statist. Soc. Ser. B, vol. 67,
no. 2, pp. 301–320, 2005.

[29] P. O. Hoyer, “Non-negative sparse coding,” in Proc. NNSP,
Valais, Switzerland, Sep. 2002, pp. 557–565.

[30] V. Paul Pauca, J. Piper, and Robert J. Plemmons, “Nonnegative
matrix factorization for spectral data analysis,” Linear Algebra
Appl., vol. 416, no. 1, pp. 29 – 47, 2006.

[31] Ivan Ginchev and Denitza Gintcheva, “Characterization and
recognition of D.C. functions,” J. Glob. Optim., vol. 57, no. 3,
pp. 633–647, 2013.

[32] Julien Mairal, “Incremental majorization-minimization op-
timization with application to large-scale machine learning,”
SIAM J. Optim., vol. 25, no. 2, pp. 829–855, 2015.

[33] Dimitri P. Bertsekas, Nonlinear Programming, Athena Scitific,
1999.

2566


