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ABSTRACT
Consider a structured matrix factorizaton (SMF) whose coefficient
vectors are constrained to lie in the unit simplex. This kind of sim-
plex SMF (SSMF) has received growing attention and has found
many applications such as hyperspectral unmixing in remote sens-
ing, text mining in machine learning, and blind source separation in
signal processing. The aim of this paper is to establish a maximum-
likelihood (ML) estimation framework for SSMF in the presence of
Gaussian noise and outliers, and to demonstrate its potential. Our
ML formulation has the coefficient vectors marginalized in accor-
dance with a prescribed probabilistic model, and this leads to a like-
lihood function that contains multi-dimensional integrals. Unfortu-
nately these integrals do not appear to have analytically tractable so-
lutions, and this makes the ML problem challenging. We tackle the
problem by using sample average approximation in stochastic op-
timization and majorization-minimization. Simulation results show
that the resulting ML algorithm significantly outperforms several ex-
isting methods when noise and outliers are present.

Index Terms— Structured matrix factorization, majorization
minimization, sample average approximation, hyperspectral unmix-
ing

1. INTRODUCTION

Consider a data model as follows:

yn = Asn + vn, n = 1, . . . , L, (1)

where yn ∈ RM is an observed data point, A ∈ RM×N is a basis
matrix, sn ∈ RN is the coefficient vector for yn, and vn ∈ RM
is noise. Here, N describes the basis rank, and we assume N <
max{M,L}. The above data model can be expressed in a factored
formY = AS+V , whereY = [ y1, . . . ,yL ],S = [ s1, . . . , sL ],
V = [ v1, . . . ,vL ]. The problem of structured matrix factorization
(SMF) is to determine A and S from Y , assuming some structures
withA and/or S.

For example, non-negative matrix factorization (NMF), which
assumes A ≥ 0, S ≥ 0, is seen as an SMF; here, the notation
X ≥ 0 means that X is element-wise non-negative. NMF is well
known for its wide variety of applications [1, 2]. There is another
type of SMF that has recently drawn significantly growing attention.
This SMF has many names or is closely related to several indepen-
dent developments from different areas, and we will use the name
simplex SMF (SSMF) for the sake of simplicity. SSMF assumes that
every sn lies in the unit simplex, i.e., it satisfies sn ≥ 0, 1Tsn = 1
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(1 denotes an all-one vector); the basis A does not need to be non-
negative, although such a structure can also be added in the model if
one desires. The developments of SSMF are probably most promi-
nent in hyperspectral unmixing, a very active topic in remote sens-
ing; see [3, 4] for the background. Lately, SSMF has also attracted
much interest in machine learning [5, 6]. There, the application lies
in text mining, and SSMF is often associated with, or studied un-
der, a framework called separable NMF. Other than that, SSMF has
found many applications such as video summarization in computer
vision [7], blind separation of speech sources [8], blind spectra esti-
mation [9], to name just a few. One appealing aspect of SSMF is its
theoretical identifiability. It has been shown that under some mild as-
sumptions such as separability [5] and a much more relaxed form of
separability [8, 10, 11], SSMF exhibits very desirable identifiability
results with the extracted factorsA,S.

In this paper we consider a maximum-likelihood (ML) frame-
work for SSMF. The framework we adopted is not to estimate A
and S jointly. Instead, a probabilistic model is applied on S, and the
marginalized likelihood with respect to S is used as the ML metric.
Consequently, we care only about the estimation of A (once A is
obtained, one can easily estimate S by solving an inverse problem).
Such an ML formulation was considered only in the noiseless case
in previous work [12]. Here, we assume not only the noisy case, but
also the possible presence of outliers. The resulting ML problem is
challenging, and we tackle it via a combination of stochastic opti-
mization and majorization-minimization techniques. Our numerical
results will show that the ML framework holds great potential in en-
hancing estimation performance in the noisy case.

2. THE ML FORMULATION

Let us describe the probabilistic model that will lead to our ML for-
mulation. Given each index n, we assume that there is a probability
that yn is an outlier and does not follow the nominal model (1).
Also, for the nominal model (1), the noise vectors vn’s are indepen-
dent and identically distributed (i.i.d.) and follow a Gaussian distri-
bution. The probability density function (p.d.f.) of yn conditioned
on sn and givenA may therefore be modeled as

p(yn|sn;A) = (1− β)N (yn;Asn,Σ) + βh(yn),

where 0 ≤ β < 1 is the probability that yn is an outlier,

N (x;µ,Σ) =
1√

(2π)Mdet(Σ)
e−

1
2
(x−µ)TΣ−1(x−µ)

denotes the Gaussian p.d.f. with mean µ and covariance Σ, and
h is the outlier p.d.f. which is assumed to be independent of A
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and sn. The outlier p.d.f. h can take any positive p.d.f. function,
and usually we would choose an uniform distribution function for h.
The coefficient vectors sn’s are modeled to be i.i.d. and follow a
Dirichlet distribution

q(sn) =
Γ(
∑N
i=1 αi)∏N

i=1 Γ(αi)

N∏
i=1

sαi−1
n,i , sn ∈ S,

where Γ is the gamma function,α > 0 is the so-called concentration
parameter of the Dirichlet distribution, and S = {s | s ≥ 0,1Ts =
1} is the unit simplex.

The ML formulation is as follows. Let

p(yn;A) =

∫
S
p(yn|sn;A)q(sn)dsn

= (1− β)

∫
S
N (yn;Asn,Σ)q(sn)dsn + βh(yn)

(2)

be the marginalized p.d.f. of yn with respect to sn. We seek to
maximize the likelihood function

∏L
n=1 p(yn;A), or equivalently,

min
A∈RM×N

−
∑L
n=1 log (p(yn;A)) . (3)

Solving the ML problem (3) is the main focus of this paper. At this
point, we should mention that the ML problem (3) is hard to handle
(at least directly). The main difficulty is that the integral in (2) does
not appear to have an explicit or closed-form expression in general;
the only known exception is the noiseless case [12].

3. THE PROPOSED SOLUTION

In this section we develop a method for handling the ML prob-
lem (3). There are two ingredients with our approach, namely, sam-
ple average approximation (SAA) and majorization-minimization
(MM). SAA is a widely-used technique in stochastic optimization
and its idea is as follows. Suppose that we can generate random
samples in accordance with q(sn), which is true for our prob-
lem (Dirichlet random variables are very easy to generate). Let
ξ1n, . . . , ξ

R
n be a collection of i.i.d. random samples drawn from

q(sn), where R is the sample size. We approximate (2) by the
sample average

p(yn;A) ≈ (1− β)
1

R

R∑
i=1

N (yn;Aξin,Σ) + βh(yn),

and plug the above approximation into the ML problem (3) to obtain
an SAA-ML problem

min
A∈RM×N

−
∑L
n=1 log

(
1−β
R

∑R
i=1N

(
yn;Aξin,Σ

)
+ βh(yn)

)
.

(4)
Generally, SAA would require a large number of samples R to pro-
vide good approximation. Our empirical experience is that for a
basis rank of 5 or less, we can obtain reasonably good results by
using a sample size of about R = 500. Moreover, in the optimiza-
tion context it has been shown that SAA exhibits certain desirable
properties; e.g., solution proximity before and after SAA when R is
large. Readers are referred to [13] for details.

However, SAA alone is not enough. The SAA-ML problem (4)
is non-convex, and to tackle this issue we need another technique.

We use MM [14, 15] and the operating principle is as follows. Let
f(A) be the objective function of problem (4), and let u(A, Ā) be
a function that satisfies the following two properties:

f(A) ≤ u(A, Ā), for anyA, Ā, (5a)

f(A) = u(A,A), for anyA. (5b)

Such a function is called a majorizer of f . A majorizer requires de-
sign in a problem-specific sense, and it is usually easier to minimize
than f . MM works by running an iterative update

At+1 = arg min
A∈RM×N

u(A,At), t = 1, 2, . . . ,

As a desirable property, it has been shown that a limit point of {At}
is guaranteed to converge to a stationary point of the problem if f
and u are smooth; see [15].

Now, we claim that the following function is a good majorizer of
f :

u(A, Ā) =

−
L∑
n=1

[
R∑
i=1

θin log

(
N (yn;Aξin,Σ)

Rθin/(1− β)

)
+ θR+1

n log

(
βh(yn)

θR+1
n

)]
,

(6)

where

θin =


1−β
R
N (yn; Āξin,Σ)

1−β
R

∑R
j=1N (yn; Āξjn,Σ) + βh(yn)

, i = 1, . . . , R,

βh(yn)
1−β
R

∑R
j=1N (yn; Āξjn,Σ) + βh(yn)

, i = R+ 1.

(7)
It can be verified that (6) is a majorizer of f (or satisfies (5)). The
proof, which we skip here, is nothing more than applying Jensen’s
inequality and using the fact that θin ≥ 0 for all n, i,

∑R+1
i=1 θin = 1

for all n. To see why (6) is a good majorizer, consider the mini-
mization minA u(A, Ā). Through careful algebraic manipulations,
it can be shown that

u(A, Ā) = Tr(ΦATΣ−1A)− 2Tr(CATΣ−1) + c(Ā), (8)

where c(Ā) is a term that does not depend onA,

Φ =

L∑
n=1

R∑
i=1

θinξ
i
n(ξin)T , C =

L∑
n=1

yn

(
R∑
i=1

θinξ
i
n

)T
.

In particular, note that u is convex quadratic inA. It is easy to show
that the solution to minA u(A, Ā) is simply

arg min
A

u(A, Ā) = CΦ†; (9)

(the superscript “†” denotes the pseudo-inverse).
Putting the above components together, we obtain an SAA-MM

algorithm for the ML problem in Algorithm 1. As seen, the algo-
rithm takes an iteratively reweighted least squares form and is simple
to implement.

We should discuss the relationship of the above SAA-MM ap-
proach and some existing ML approach. SAA-MM is, in fact, very
similar to the implementation of expectation maximization (EM) via
Monte-Carlo (MC) averaging [16,17]. However, the concept of MM
is more general and flexible than that of EM. Also, expert readers
should note that the MC-EM approach does not allow one to straight-
forwardly derive our algorithm in Algorithm 1 (Hint: the obstacle
lies in the outlier term, and how Jensen’s inequality is applied turns
out to make a significant difference).
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Algorithm 1 SAA-MM

1: input: the observed data {yn}Ln=1, a sample sizeR, and a start-
ing pointA0

2: i.i.d. generate {ξin}Ri=1 from q(sn) for n = 1, . . . , L;
3: t = 0;
4: repeat
5: θin ←

1−β
R
N (yn;A

tξin,Σ)
1−β
R

∑R
j=1N (yn;Atξ

j
n,Σ)+βh(yn)

, i = 1, . . . , R, n =

1, . . . , L;
6: θR+1

n ← βh(yn)
1−β
R

∑R
j=1N (yn;Atξ

j
n,Σ)+βh(yn)

, n = 1, . . . , L;

7: At+1 =

 L∑
n=1

yn

(
R∑
i=1

θinξ
i
n

)T( L∑
n=1

R∑
i=1

θinξ
i
n(ξin)T

)†
;

8: t = t+ 1;
9: until a stopping rule is satisfied.

10: output: At.

4. EXTENSIONS AND MODIFICATION

In this section we describe several extensions and modification of
our SAA-MM approach.

4.1. Unknown Outlier Probability β

Previously, the probability of occurrence of outliers β is assumed to
be given. Suppose that β is unknown, and we wish to estimate both
A and β from the above ML framework. As it turns out, this is easy.
Let u(A, β, Ā, β̄) be a majorizer that takes the same expression as
(6), except that θn,i in (7) has β replaced by β̄. It can be shown
that the minimization minA,β u(A, β, Ā, β̄) can be decoupled; the
solution with respect toA is the same as (9), while the solution with
respect to β is

β =
1

L

L∑
n=1

θR+1
n .

Hence, we only need to add the above equation in Algorithm 1
(specifically, between Step 6–7) to handle the unknown outlier prob-
ability case.

4.2. Non-NegativeA

Suppose that A is also required to be non-negative (or ML sub-
ject to A ≥ 0 is sought). We can apply the same SAA-MM
in the last section, although the caveat is that we now need to
solve a non-negatively constrained quadratic program (NCQP)
minA≥0 u(A, Ā) at every iteration—which has no closed-form
solution in general. While we can employ efficient off-the-shelf
solvers to handle the NCQP, the resulting SAA-MM algorithm may
be computationally demanding at least in a per-iteration sense.

We use a different trick that leverages once again on MM princi-
ples. Let

ũ(A, Ā) = u(Ā, Ā)+2Tr(Σ−1(ĀΦ−C)T (A−Ā))+λ‖A−Ā‖2F ,
(10)

where u is defined by the same way as before (see (6)), and

λ = ‖Σ−1‖2‖Φ‖2;

(note that ‖ · ‖2 denotes the matrix 2-norm). Eq. (10) is obtained
by applying majorization on the quadratic terms of u in (8), and the

majorization method is the same as that used in MM for `1 − `2
optimization in compressive sensing; see [18, 19] for details. Being
an outcome of applying majorizations twice, ũ is still a majorizer
of f as one can verify from the definition (5). The advantage of
using ũ to build an SAA-MM algorithm is that the minimization
minA≥0 ũ(A, Ā) has a closed-form solution

arg min
A≥0

ũ(A, Ā) =

(
Ā− 1

λ
Σ−1(ĀΦ−C)

)
+

, (11)

where (·)+ denotes the projection onto the non-negative orthant. To
summarize, we can handle the non-negative A case by replacing
Step 7 of Algorithm 1 with (11).

4.3. An Accelerated Scheme

Let us continue our development for the non-negative A case in the
last subsection. Empirically we found that the MM update in (11)
leads to slow convergence with the SAA-MM algorithm. We handle
this issue by taking insight from Nesterov’s accelerated method [20]
and some recent related development. Specifically, we replace Ā in
(11) with an extrapolated point. To describe it accurately, consider
the algorithm description in Algorithm 1, and replace Step 7 by

At+1 =

(
Ht − 1

λ
Σ−1(HtΦ−C)

)
+

,

where

Ht = At +

(
γt − 1

γt+1

)
(At −At−1),

γt+1 =
1 +

√
1 + 4(γt)2

2
,

with γ0 = 1. Note that for large t, γt approaches a constant and the
algorithm will act almost like MM. It has been shown in other ap-
plications that such extrapolation can improve the convergence rate
significantly [11, 21], and we found the same phenomena with our
problem.

5. SIMULATION RESULTS

5.1. Synthetic Data Experiment

We first test our SAA-MM algorithm on synthetic data. We use
the same probabilistic model as in Section 2 to generate the ob-
served data Y , with the following model parameters: data size
(M,L) = (50, 3000), basis rank N = 5, outlier probability
β = 0.01, noise covariance Σ = σ2I , concentration parameter
α = 1 (which means that sn’s are uniformly distributed on the unit
simplex), h being an element-wise i.i.d. uniform function with inter-
val [0, 1.6]. Also, in each simulation trial, A is randomly generated
following an element-wise i.i.d. uniform distribution on [0, 1].

We employ the extended version of our SAA-MM algorithm de-
scribed in Section 4 (i.e., it assumes unknown outlier probability β
and non-negativeA); the sample size isR = 500, and the algorithm
is initialized by another algorithm called SISAL [22]. The algo-
rithms to be compared are SISAL, RVolMin [11], MVC-NMF [23],
MVES [24] and Bayesian MCMC (B-MCMC) [25]. The parame-
ters of these algorithms were tuned for optimized performance in
our comparison. Also, for B-MCMC, 100 samples are used.
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Fig. 1 shows the mean square errors (MSEs) of the estimated A
provided by the various algorithms. We observe that the MSE per-
formance of SAA-MM is better than that of the other algorithms, and
the performance improvement is particularly significant for SNR ≤
20dB. Another observation is that for SNR ≥ 15dB, the MSE per-
formance of SAA-MM does not improve consistently with the SNR;
instead it goes up slightly. The reason is due to the finite sample
effects in SAA, and the effects may be reduced by increasing the
sample size.

Table 1 shows the runtime performance of the various algo-
rithms. The runtimes were evaluated on a desktop computer with
Intel Core i7 3GHz CPU and 32GB memory, and under MAT-
LAB. We see that SAA-MM has a higher runtime requirement than
SISAL, RVolMin, MVC-NMF and MVES, although it is faster than
B-MCMC.

10 15 20 25 30
SNR (dB)

-35

-30

-25

-20

-15

-10

-5

M
S

E
 (

d
B

)

SISAL
RVolMin
SAA-MM
MVC-NMF
MVES
B-MCMC

Fig. 1. MSE performance

Table 1. Runtime performance
Algorithm SAA-MM SISAL RVolMin MVC-NMF MVES B-MCMC
Time(s) 26.50 0.09 2.40 11.26 1.66 435.51

5.2. Real Data Experiment

We apply SAA-MM to hyperspectral unmixing (HU). Our experi-
ment is based on a real hyperspectral remote-sensing image called
AVIRIS Moffett Field 1997 [26]. The image is illustrated in Fig. 2.
This hyperspectral image is composed of three main materials,
namely, water, soil and vegetation (thereby N = 3). The HU prob-
lem aims at unmixing these materials and retrieving their abundance
maps. According to the previous domain study [27], some pixels
like those around the lakeshore are subjected to heavy nonlinear
effects and can be seen as outliers.

Our experimental settings are similar to those in [11]. Addition-
ally, we choose Σ = 0.1I , α = 1 and R = 500 for the SAA-
MM algorithm. Fig. 3 illustrates the abundance maps and outlier
map recovered by SAA-MM. The result is considered successful

since the recovered maps look consistently with those in previous
work [11, 27]. Also, most of the outliers identified by SAA-MM are
around the lakeshore, which agrees with the domain study.

Fig. 2. “Moffett Field 1997” sub-image

0
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0.5
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Fig. 3. Abundance maps and outlier map

6. CONCLUSION AND DISCUSSION

In this paper we demonstrated the potential of using a stochastic ML
framework to perform SSMF. In particular, numerical experiments
showed that the ML approach gives promising estimation perfor-
mance. It also outperforms several existing state-of-the-art methods
when the data are noisy and contaminated by outliers. The draw-
back of our currently proposed ML algorithm is that it has relatively
higher computational requirements than the other existing methods.
At this point, we should mention that the running-time issue can be
mitigated through parallel or multi-core computations since our al-
gorithm (Algorithm 1) is quite amenable to such implementations.
As future work, it would be worthwhile to study complexity reduc-
tion schemes for the ML framework.
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