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ABSTRACT
We propose a geometric assumption on nonnegative data matrices
such that under this assumption, we are able to provide upper bounds
(both deterministic and probabilistic) on the relative error of non-
negative matrix factorization (NMF). The algorithm we propose first
uses the geometric assumption to obtain an exact clustering of the
columns of the data matrix; subsequently, it employs several rank-
one NMFs to obtain the final decomposition. Furthermore, when
combined with the classical alternating nonnegative least-squares al-
gorithm, we show on synthetic examples that our proposed algorithm
outperforms the standard algorithm based on multiplicative updates.

Index Terms— Nonnegative matrix factorization, Relative error
bound, Clusterability, Separability

1. INTRODUCTION

Nonnegative matrix factorization (NMF) problem can be formulated
as follows: given a nonnegative data matrix V ∈ RF×N+ , and a pos-
itive integer K, we seek nonnegative factor matrices W ∈ RF×K+

and H ∈ RK×N+ , such that some distance of V and WH is min-
imized. Due to its non-subtractive, part-based property which en-
hances interpretability, NMF has been widely used in the fields of
machine learning [1] and signal processing [2]. In addition, there
are many fundamental algorithms to approximately solve the NMF
problem, including multiplicative update algorithms [3], alternat-
ing (nonnegative) least-squares-type algorithms [4–6] and rank-one
residual iteration [7]. However, it is proved in [8] that NMF prob-
lem is NP-hard and all the basic algorithms simply ensure that the
sequence of objective function is non-increasing and that the algo-
rithm converges to the set of stationary points [7, 9, 10]. To the best
of our knowledge, none of them is suitable for analyzing the bound
on the approximation error of NMF.

In an effort to find computationally tractable algorithms for
NMF and to provide theoretical guarantees on the errors of these
algorithms, researchers have revisited the so-called separability
assumption proposed by Donoho and Stodden in 2003 [11]. An
exact nonnegative factorization V = WH is separable if for any
k ∈ {1, 2, · · · ,K}, there is an n(k) ∈ {1, 2, · · · , N}, such that
Wn(k),j = 0 for all j 6= k and Wn(k),k > 0. That is, an ex-
act nonnegative factorization is separable if all the features can be
represented as nonnegative linear combinations of K features. It
is proved in [12] that under the separability condition, there is an
algorithm that runs in time polynomial in F , N and K and outputs
a separable nonnegative factorization V = W∗H∗ with the number
of columns of W∗ being at most K. Furthermore, a perturbation
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analysis of their algorithm is presented. The authors showed that if
V has a separable nonnegative factorization V = WH, and each
row of V is perturbed by adding a vector of small l1 norm to obtain
a new data matrix V′, then with additional assumptions on the noise
and H, their algorithm leads to an approximate nonnegative matrix
factorization W′H′ of V′ with a provable error bound for the l1
norm of each row of V′ −W′H′. To develop more efficient and
scalable algorithms and to extend the basic formulation to more
general noise models, a collection of elegant papers dealing with
NMF under various separability conditions has emerged [13–17].

1.1. Main Contributions
We introduce a geometric assumption on the data matrix V that al-
lows us to correctly group columns of V into disjoint subsets. This
then naturally suggests an algorithm that first clusters the columns
and subsequently uses a rank-one approximate NMF algorithm [18]
to obtain the final decomposition. We analyze the error performance
and provide an upper bound on the relative error. We also show
that this algorithm performs well in practice. In fact, when com-
bined with the alternating (nonnegative) least-squares (ALS) algo-
rithm implemented in nnmf function of Matlab, it outperforms the
standard algorithm based on multiplicative updates in terms of the
relative error. We note that our geometric assumption can be consid-
ered as a special case of the separability assumption [11]. However,
there are certain differences: first, because our assumption is based
on a notion of clusterability [19], our proof technique is different
from techniques in the existing literature that leverage the separa-
bility condition; second, unlike most of the papers considering sep-
arability [13–17], we mainly exploit the 2-norm of vectors instead
of 1-norm of vectors; third, the data matrix does not need to be as-
sumed to be normalized; and finally, we assume all the samples can
be approximately represented by certain special samples (e.g., cen-
troids) instead of using a small set of salient features to represent all
the features. For the final point, although mathematically, these two
approximations seem to be equivalent, our data reduction technique
enables us to provide a tighter probabilistic relative error bound for
the NMF approximation.

2. PROBLEM FORMULATION

2.1. Notations
We use capital boldface letters to denote matrices and we use lower-
case boldface letters to denote vectors. We use Matlab-style notation
for indexing, for example, V (i, j) denotes the entry of V in the i-
th row and j-th column, V (i, :) denotes the i-th row of V, V (:, j)
denotes the j-th column of V and V (:,K ) denotes the columns of
V indexed by K . ‖V‖F represents the Frobenius norm of V and
[N ] represents {1, 2, · · · , N} for any positive integer N . Inequality
v ≥ 0 or V ≥ 0 denotes element-wise nonnegativity. Let V1 ∈
RF×N1 and V2 ∈ RF×N2 , we denote by [V1,V2] the horizontal
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concatenation of the two matrices. Let V1 ∈ RF1×N and V2 ∈
RF2×N . We denote by [V1; V2] the vertical concatenation of the
two matrices. We use R++ to represent the set of positive numbers.

2.2. Our Geometric Assumption on V

We assume all the columns of our data matrix V are sampled from
K circular cones which satisfy a geometric assumption presented
in (1) to follow. We define circular cones as follows.

Definition 1 Given u ∈ RF+ with unit l2 norm and an angle α ∈
(0, π/2), the nonnegative circular cone with respect to u and α is
defined as

C (u, α) :=
{

x ∈ RF+ \ {0} :
xTu

‖x‖2
≥ cosα

}
.

In other words, C (u, α) contains all x ∈ RF+ \ {0} for which the
angle between u and x is not larger than α. We say that α and u are
respectively the size angle and basis vector of the circular cone.

We suppose that there are K such circular cones C1, · · · , CK
with corresponding unit vectors and angles, i.e., Ck := C (uk, αk)
for k ∈ [K]. Let αij := arccos

(
uTi uj

)
, we make the geometric

assumption that the columns of our data matrix V are sampled from
K circular cones which satisfy

min
i,j∈[K],i 6=j

αij > max
i,j∈[K],i 6=j

{max{αi + 3αj , 3αi + αj}}. (1)

In the proof of Lemma 1, we show that we can correctly group the
data points generated from theseK circular cones intoK sets corre-
sponding to the K circular cones under our assumption on V.

3. OUR ALGORITHM AND MAIN THEOREMS

In this section we first provide several useful lemmas and demon-
strate our algorithm for approximate NMF under our geometric as-
sumption. Subsequently, we present our main theorems that present
upper bounds on the relative errors of the NMF approximation.
Lemma 1 Under the geometric assumption given in Section 2.2 for
generating V ∈ RF×N+ , if Algorithm 1 is applied to V, then the
columns of V are partitioned into K subsets, such that the data
points in the same subset are generated from the same circular cone.

Proof We normalize V to obtain V′, such that all the columns of
V′ have unit l2 norm. From the definition, we know if a data point
is in a circular cone, then the normalized data point is also in the
circular cone. Then for any two columns x, y of V′ that are in
the same circular cone Ck, k ∈ [K], we have the largest possible
angle between them is 2αk, and thus the largest possible distance
‖x − y‖2 between these two data points is

√
2 (1− cos (2αk)).

On the other hand, for any two columns x, y of V′ that are in two
circular cones Ci, Cj , i 6= j, we have the smallest possible angle
between them is αij − αi − αj , thus the smallest possible distance
between them is

√
2 (1− cos (αij − αi − αj)). Then under the

geometric assumption (1), the distance between any two unit data
points in distinct circular cones is larger than the distance between
any two unit data points in the same circular cone. Thus Algorithm 1
returns the correct clusters. �

Now we present the following two useful lemmas. Lemma 2
provides an upper bound for the sum of the squares of perturbations
of singular values. Lemma 3 shows that we can directly obtain best
order-one nonnegative matrix factorization from best rank-one sin-
gular value decomposition.

Algorithm 1 Greedy clustering method with geometric assumption
in (1)

Input: Data matrix V ∈ RF×N+ , K ∈ N
Output: A set of non-empty, pairwise disjoint index sets
I1,I2, · · · ,IK ⊆ [N ] such that their union is [N ]
1) Normalize V to obtain V′, such that all the columns of V′ have
unit l2 norm.
2) Arbitrarily pick a point z1 ∈ V′ (i.e., z1 is a column in V′) as
the first centroid.
3) for k = 1 to K − 1 do

zk+1 := arg min
z∈V′

{max{zTi z, i ∈ [k]}} (2)

and set zk+1 be the (k + 1)-st centroid.
4) Ik := {n ∈ [N ] : k = arg maxj∈[K] z

T
j V′(:, n)} for all

k ∈ [K].

Lemma 2 (Wielandt-Hoffman Theorem for singular values) [20] If
A and A + E are in RF×N , and denote P = min (F,N), then

P∑
p=1

(σp (A + E)− σp (A))2 ≤ ‖E‖2F . (3)

where σp (A) is the p-th largest singular value of A.

Lemma 3 (Rank-one approximate NMF [18]) Let σuvT be the
rank-one singular value decomposition of a matrix V ∈ RF×N+ .
Then u′ = σ|u|, v′ = |v| solves

min
x∈RF

+,y∈R
N
+

‖V − xyT ‖F .

We now state and prove a relative error bound of the proposed
approximate NMF algorithm detailed in Algorithm 2 under our geo-
metric assumption. We can see that if the size angles of all circular
cones are small compared to the angle between the basis vectors of
any two circular cones, then exact clustering is possible, and thus the
relative error of the best approximate NMF of an arbitrary nonnega-
tive matrix generated from these circular cones can be appropriately
controlled by these size angles.
Theorem 4 Under the geometric assumption given in Section 2.2
for generating V ∈ RF×N+ , Algorithm 2 outputs W∗ ∈ RF×K+ ,
H∗ ∈ RK×N+ , such that

‖V −W∗H∗‖F
‖V‖F

≤ max
k∈[K]

{sinαk}. (4)

Proof From Lemma 1, under the geometric assumption in Section
2.2, we can obtain a set of non-empty, pairwise disjoint index sets
I1,I2, · · · ,IK ⊆ [N ] such that their union is [N ] and two data
points V (:, j1) and V (:, j2) are in the same circular cones if and
only if j1 and j2 are in the same index set. Denote Vk = V (:,Ik)
and without loss of generality, suppose Vk ∈ Ck, k ∈ [K]. For
any k ∈ [K], any column z of Vk, suppose the angle between z
and uk is β, we have β ≤ αk and z = ‖z‖2(cosβ)uk + y, with
‖y‖2 = ‖z‖2 sinβ ≤ ‖z‖2 sinαk. Thus Vk can be written as
the sum of a rank-one matrix Ak and a perturbation matrix Ek. By
Lemma 3, we can find the best rank-one approximate NMF of Vk

from the singular value decomposition of Vk. Suppose w∗k ∈ RF+
and hk ∈ R|Ik|

+ solves the best rank-one approximate NMF, and
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Algorithm 2 Approximate NMF under the geometric assumption

Input: Data matrix V ∈ RF×N+ , K ∈ N
Output: Factor matrices W∗ ∈ RF×K+ , H∗ ∈ RK×N+

1) Use Algorithm 1 to find a set of non-empty, pairwise disjoint
index sets I1,I2, · · · ,IK ⊆ [N ].
2) for k = 1 to K do

Vk := V (:,Ik) ,

[Uk,Σk,Xk] := svd (Vk) ,

w∗k := Σk (1, 1) |Uk (:, 1) |, hk := |Xk (:, 1) |,
h∗k := zeros (N, 1) ,h∗k (Ik) = hk.

3) W∗ := [w∗1 , · · · ,w∗K ], H∗ :=
[
(h∗1)T ; · · · ; (h∗K)T

]
.

denote Sk := w∗kh
T
k as the best rank-one approximation matrix of

Vk. Let Pk = min (F, |Ik|), then by Lemma 2, we have

‖Vk − Sk‖2F =

Pk∑
p=2

σ2
p (Vk) =

Pk∑
p=2

σ2
p (Ak + Ek) ≤ ‖Ek‖2F .

(5)
From the previous result, we know that

‖Ek‖2F
‖Vk‖2F

=

∑
z∈Vk

‖z‖22 sin2 βz∑
z∈Vk

‖z‖22
≤ sin2 αk, (6)

where βz denotes the angle between z and uk and z ∈ Vk runs over
all columns of the matrix Vk.

Define h∗k ∈ RN+ as h∗k (n) = hk (n), if n ∈ Ik and
h∗k (n) = 0 if n /∈ Ik. Let W∗ := [w∗1 , · · · ,w∗K ] and

H∗ :=
[
(h∗1)T ; · · · ; (h∗K)T

]
, then we have

‖V−W∗H∗‖2F
‖V‖2F

=

∑K
k=1‖Vk−w∗kh

T
k ‖2F

‖V‖2F
≤
∑K
k=1‖Vk‖2F sin2 αk∑K

k=1 ‖Vk‖2F
.

Thus we have (4) as desired. �

We now provide a tighter relative error bound assuming a prob-
abilistic model. For simplicity, we assume a straightforward and
easy-to-implement statistical model for the sampling procedure.
Theorem 5 Suppose theK circular cones Ck := C (uk, αk) ∈ RF+
for k ∈ [K] satisfy the geometric assumption given by (1). Let λ :=
(λ1;λ2; · · · ;λK) ∈ RK++. We generate a data matrix V ∈ RF×N+

from the following generative process for each column v of V:
1. sample k ∈ [K] with equal probability 1/K;
2. sample l from the exponential distribution with parameter λk, i.e.,
the distribution Exp (λk);
3. uniformly sample a unit vector z ∈ Ck with respect to the angle
between z and uk; if z /∈ RF+, set all the negative entries of z to
zero, and rescale z to be a unit vector;
4. let v =

√
lz;

Let f(α) := 0.5 − (sin 2α) / (4α), then for small ε > 0, with
probability at least 1− 8 exp

(
−ξNε2

)
, one has

‖V −W∗H∗‖F
‖V‖F

≤

√∑K
k=1 f (αk) /λk∑K

k=1 1/λk
+ ε, (7)

where the constant ξ > 0 depends only on λk and f (αk) for all
k ∈ [K].

The relative error bound produced by Theorem 5 is better than that
of Theorem 4, i.e., the former is more conservative. This can be seen
from (10) to follow or by the inequality α ≤ tanα for α ∈ [0, π/2).
We also observe this in the experiments.

Definition 2 A sub-exponential random variable X is one that sat-
isfies one of the following equivalent properties
1. Tails: P (|X| > t) ≤ exp (1− t/K1) for all t ≥ 0;
2. Moments: (E|X|p)1/p ≤ K2p for all p ≥ 1;
3. E [exp (X/K3)] ≤ e;
where Ki, i = 1, 2, 3 are positive constants. The sub-exponential
norm of X , denoted ‖X‖Ψ1 , is defined to be

‖X‖Ψ1 := sup
p≥1

p−1 (E|X|p)1/p .

Lemma 6 (Bernstein-type inequality) [21] Let X1, · · · , XN be in-
dependent sub-exponential random variables with zero expectations,
and M = maxi ‖Xi‖Ψ1 . Then for every ε ≥ 0, we have

P

(∣∣∣ N∑
i=1

Xi

∣∣∣ ≥ εN) ≤ 2 exp

[
−c ·min

(
ε2

M2
,
ε

M

)
N

]
, (8)

where c > 0 is an absolute constant.

By combining Lemma 6 with the upper bound result shown in the
proof of Theorem 4, we can obtain the proof of Theorem 5.

Proof of Theorem 5 From (5) and (6) in the proof of Theorem 4,
to obtain an upper bound for the square of the relative error, we can
consider the following random variable

DN :=

∑N
n=1 L

2
n sin2 Bn∑N

n=1 L
2
n

, (9)

where Ln is the random variable corresponding to the length of the
n-th point, andBn is the random variable corresponding to the angle
between the n-th point and uk for some k ∈ [K] such that the point
is inCk. We first consider estimating the above random variable with
the assumption that all the data points are generated from a single
circular cone C := C (u, α) (i.e., assume K = 1), and the square
of lengths are generated according to the exponential distribution
Exp (λ). Because we assume the angle βn, n ∈ [N ] is sampled
from a uniform distribution on [0, α], the expectation of sin2 Bn is

E
[
sin2 Bn

]
=

∫ α

0

1

α
sin2 β dβ = 0.5− sin 2α

4α
= f (α) . (10)

Here we only need to consider vectors z ∈ RF+ whose angles with
u are not larger than α. Otherwise, we have E

[
sin2 Bn

]
≤ f (α).

Our probabilistic upper bound also holds in this case.
Since the length and the angle are independent, we have

E [DN ] = E [E [DN |L1, · · · , LN ]] = f (α) , (11)

and we also have

E
[
L2
n sin2 Bn

]
= E

[
L2
n

]
E
[
sin2 Bn

]
=
f (α)

λ
. (12)

Denote Xn = L2
n for all n ∈ [N ]. Let

HN :=

∑N
n=1 Xn

N
, and GN :=

∑N
n=1 Xn sin2 Bn

N
. (13)

We have for all n ∈ [N ],

E[Xp
n] = λ−pΓ (p+ 1) ≤ λ−ppp, ∀ p ≥ 1.
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Thus ‖Xn‖Ψ1 ≤ λ−1, and Xn is sub-exponential. By the triangle
inequality, we have ‖Xn − EXn‖Ψ1 ≤ ‖Xn‖Ψ1 + ‖EXn‖Ψ1 ≤
2‖Xn‖Ψ1 . Hence, by Lemma 6, for all ε > 0, we have (8) whereM
can be taken as M = 2/λ. Because(

E
[(
Xn sinB2

n

)p])1/p

≤ λ−1p sin2 α ≤ λ−1p,

we have similar large deviation result for GN .
On the other hand, for all ε > 0

P (|DN − f (α) | ≥ ε) = P
(∣∣∣GN
HN
− f (α)

∣∣∣ ≥ ε)
≤ P

(
|λGN − f (α) | ≥ ε

2

)
+ P

(∣∣∣GN
HN
− λGN

∣∣∣ ≥ ε

2

)
For the second term, by fixing small δ1, δ2 > 0, we have

P
(∣∣∣GN
HN
− λGN

∣∣∣ ≥ ε

2

)
= P

(
|1− λHN |GN

HN
≥ ε
)

≤ P
(
|1− λHN |GN

HN
≥ ε,HN ≥

1

λ
− δ1, GN ≤

f (α)

λ
+ δ2

)
+ P

(
HN <

1

λ
− δ1

)
+ P

(
GN >

f (α)

λ
+ δ2

)
Combining the bounds for HN and GN in (8) with the above in-
equalities, if we set δ1 = δ2 = ε and take ε sufficiently small,

P (|DN − f (α) | ≥ ε) ≤ 8 exp
(
−ξNε2

)
, (14)

where ξ is a positive constant depending on λ and f (α).
Now we turn to the general case in which K ∈ N. We have

E [Xn] =

∑K
k=1 1/λk

K
, E

[
Xn sin2 Bn

]
=

∑K
k=1 f (αk) /λk

K
,

and for all p ≥ 1,

(E[Xp
n])1/p =

(∑K
k=1 λ

−p
k Γ (p+ 1)

K

)1/p

≤ p
(

min
k
λk
)−1

.

Similar to (14), we have

P

(∣∣∣DN − ∑K
k=1 f (αk/λk)∑K

k=1 1/λk

∣∣∣ ≥ ε) ≤ 8 exp
(
−ξNε2

)
,

and thus, if we let ∆ :=

√∑K
k=1 f (αk) /λk∑K

k=1 1/λk
, we have

P
(∣∣√DN −∆

∣∣ ≤ ε) ≥ P
(∣∣DN −∆2

∣∣ ≤ ∆ε
)

≥ 1− 8 exp
(
−ξN∆2ε2

)
.

This completes the proof of (7). �

4. EXPERIMENTS

To verify the correctness of our bounds and to observe the compu-
tational efficacy of the proposed algorithm, we perform numerical
simulations on synthetic datasets. To generate the columns of V,
given an integer k ∈ [K] and an angle β ∈ [0, αk], we need to find
a unit nonnegative vector z such that the angle between z and uk is
β. Let b = cosβ, we take x = buk (x satisfies uTk x = b) and let
i := arg minf∈[F ] uk (f). Let y be a vector satisfying uTk y = 0,
y (i) = 1 and ŷ ∈ span{ûk}, where ŷ denotes y without the i-
th entry and similar for ûk. Then let t =

√
1− b2y/‖y‖2 and set

z = x + t. The vector z is one of the vectors we desire. This
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Fig. 1. Error bounds and performances of various algorithms

Table 1. Running time(s) of various algorithms
N Alg2 Als Mult Alg2+Als
102 0.4470 0.1950 0.6150 0.5160
103 1.5340 0.2410 1.9300 2.5970
104 13.8670 4.1930 25.3410 28.7450

generation procedure does not affect the upper bounds in Theorem 4
and Theorem 5 because we only use the length of samples and angle
between samples with the basis vectors to derive the upper bounds.

For simplicity of presentation, we set the size angles α to be the
same for all the circular cones. The angle between any two basis
vectors is set to be (4α+ ∆α) where ∆α := 0.01. The parameter
for the exponential distribution λ := 1./ (1 : K). We increase N
from 102 to 104 logarithmically. We fix the parameters F = 103,
K = 50 and α = 0.3, and obtain the results shown in Fig. 1. All
the results are averaged over 10 runs. In the left plot of Fig. 1, we
compare the relative errors of our algorithm with the derived rel-
ative error bounds. In the right plot, we compare the relative er-
rors of our algorithm (denoted as “Alg2”) with the relative errors of
two classical algorithms, namely, the multiplicative update algorithm
(denoted as “Mult”) and the alternating (nonnegative) least-squares
algorithm (denoted as “Als”); these two algorithms can be imple-
mented using the nnmf function of Matlab. Furthermore, we con-
sider “Alg2+Als”, i.e., running the “Als” algorithm with the initial
factor matrices set to be the results obtained by “Alg2”. In addition,
the running times for the algorithms are shown in Table 4. All ex-
periments we run on an Intel Core i7 CPU at 2.50GHz and 16GB of
memory, and the Matlab version is 8.3.0.532 (R2014a).

From Fig. 1, we observe that the numerical relative errors are
truly smaller than our theoretical relative error bounds. The “Als” al-
gorithm is not stable and may lead to large relative errors for certain
sample sizes. The performance of “Alg2” is comparable to “Mult”.
However, when combined with “Als”, “Alg2” achieves noticeable
smaller relative errors for large sample sizesN . In addition, the run-
ning time of “Alg2+Als” is comparable to “Mult” so we conclude
that for large sample sizes, “Alg2+Als” is a useful alternative to the
ubiquitous “Mult” algorithm for NMF.

5. FUTURE WORK

We hope to extend Theorem 5 by providing an even tighter error
bound for the relative error using the theory of singular values of
random matrices [21–23]. We also would like to provide relative
error bounds when K is unknown (cf. [24]). Finally, we will apply
our algorithm to real datasets in future.
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