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ABSTRACT

Decomposition of symmetric tensors has found numerous

applications in blind sources separation, blind identifica-

tion, clustering, and analysis of social interactions. In this

paper, we consider fourth order symmetric tensors, and its

symmetric tensor decomposition. By imposing unit-length

constraints on components, we resort the optimisation prob-

lem to the constrained eigenvalue decomposition in which

eigenvectors are represented in form of rank-1 matrices. To

this end, we develop an augmented Lagrangian algorithm

with simple update rules. The proposed algorithm has been

compared with the Trust-Region solver over manifold, and

achieved higher success rates. The algorithm is also validated

for blind identification, and achieves more stable results than

the ALSCAF algorithm.

Index Terms— symmetric tensor decomposition, spheri-

cal quadratic programming, augmented Lagrangian algorithm

1. INTRODUCTION

Symmetric tensor is a tensor with particular structure, invari-

ant under any permutation of its indices, i.e. tensor permu-

tation. The concept of symmetric tensor is extended from

symmetric matrix, and occurs widely in engineering, physics

and mathematics. In signal processing, symmetric tensors

can be generated as cumulant tensors [1–3], or using char-

acteristic generating function in blind source or identifica-

tion [1, 4–6]. The symmetric tensor can also represent sim-

ilarity or interaction between groups of identities, e.g., differ-

ences between patches in images, the number of emails ex-

changing between members, shared-publications between re-

searchers [7–9]. With these representation, decomposition of

the symmetric tensors can be used to find common structures

between samples, and is useful for clustering [10,11]. In anal-

ogy with the theory of symmetric matrices, one can compute

eigenvalues and eigenvectors of the symmetric tensors [12].

In this paper, we consider a particular case of the sym-

metric tensors of order-4, and develop a novel algorithm for

decomposition of the tensors into rank-1 symmetric tensors.

The tensors can be fourth-order cumulant tensors of the mix-

ture of a linear mixing system in BSS problem [1]. We show

that the joint diagonalization of symmetric matrices can be

converted to the best rank-1 approximation of symmetric ten-

sor of order-4. For such decompositions, one can apply the

Higher-order power method [13], or its symmetric version

[14]. The decomposition is also related to the higher order

INDSCAL tensor decomposition. For this problem, one can

employ the damped Gauss-Newton algorithm [15] which up-

dates all parameters at a time by exploiting the structure of

the Hessian. Alternatively, Wang and Qi [16] proposed a suc-

cessive decomposition method.

In [17], by converting the symmetric tensor to the corre-

sponding homogeneous polynomial, the symmetric tensor de-

composition reduces to the decomposition of homogeneous

polynomial as a sum of powers of linear forms (Waring’s

problem). From which the authors deduced the decomposi-

tion by solving a simple eigenvalue problem, by means of

linear algebra manipulations. The results are often complex-

valued.

In this paper, our algorithm first focuses on finding best

symmetric rank-1 tensor. Decomposition of a symmetric

tensor into high symmetric rank-1 terms can be resorted to

best rank-1 symmetric tensor approximation to the residue

between the data and the other rank-1 terms [18]. By in-

troducing additional parameters, we convert the best rank-1

symmetric tensor approximation to the constrained eigen-

value decomposition in which eigenvectors are represented in

form of rank-1 matrices. Finally, an augmented Lagrangian

algorithm for the constrained optimisation problem has been

developed. Simulation results show that compared with the

Trust-Region algorithm which minimises the problem over

sphere, our algorithm achieves higher success rates.

2. DECOMPOSITION OF SYMMETRIC MATRICES

The joint diagonalization of symmetric matrices is known as

one of popular methods for blind source separation [19]. The

symmetric matrices can be covariance matrices [20], or sec-

ond derivatives of the cumulant generating function [21], or

pairwise distance between samples varying over times as in

INDSCAL [7,15]. We shall present link between the joint di-

agonalization of symmetric matrices and the decomposition

of order-4 symmetric tensor.

Let Yt be symmetric matrices, and t-th frontal slices of

a tensor Y of size I × I × T , t = 1, . . . , T . The main aim of
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joint diagonalization of Yt is to find a matrix A such that its

(pseudo-)inverse A† jointly diagonalizes Yt, which is alterna-

tively expressed as a symmetric tensor decomposition as

Yt = A diag(bt)A
T

where bt are t-th row vectors of a matrix B. The decomposi-

tion can be achieved by minimizing a cost function given by

min D =

T
∑

t=1

‖Yt −

R
∑

r=1

br,t ar aT
r ‖

2
F (1)

where ar are columns of the matrix A, which can be further

assumed to have unit-norm. Let Yr,t = Yt −
∑

s,r bs,t asaT
s , the

above cost function is then rewritten in a quadratic form of br,t

min

T
∑

t=1

‖Yr,t − br,t ar aT
r ‖

2
F (2)

=

T
∑

t=1

‖Yr,t‖
2
F + b2

r,t − 2 br,t (aT
r Yr,t ar).

Implying that the optimal b⋆r,t = aT
r Yr,t ar, and the optimisa-

tion problem simplifies into a maximisation problem

max

T
∑

t=1

(aT
r Yr,t ar)

2

= (ar ⊗ ar)
T















T
∑

t=1

vec
(

Yr,t

)

vec
(

Yr,t

)T















(ar ⊗ ar)

= Q • (ar ◦ ar ◦ ar ◦ ar), (3)

where Q is a symmetric tensor of order-4, “⊗′′, “◦′′ and “•′′

represent the Kroncker product, the outer product, and the

inner product between two tensors, respectively [22]. It is

clear that solving the optimisation (1) or (2) leads to finding

the leading eigenvector ar of the symmetric tensor Q.

3. BEST RANK-1 APPROXIMATION TO

SYMMETRIC TENSOR OF ORDER-4

We now consider an order-4 symmetric tensor Y of size

I × I × I × I. Decomposition of Y into R symmetric rank-

1 terms is done by minimizing the Frobenius norm of the error

min
λr ,xr

‖Y −

R
∑

r=1

λr xr ◦ xr ◦ xr ◦ xr‖
2
F (4)

where λr are weights of rank-1 tensors, and xr are unit length

vectors, xT
r xr = 1, for r = 1, 2, . . . ,R. In BSS or blind identi-

fication, R is the number of sources. The above optimisation

problem (4) can be recast as sequential best rank-1 symmetric

tensor approximations

min ‖Yr − λr xr ◦ xr ◦ xr ◦ xr‖
2
F (5)

where the tensor Yr = Y−
∑

s,r λs xs ◦ xs ◦ xs ◦ xs is defined as

in the hierarchical alternating update [18,23]. We will present

a novel algorithm for the optimisation in (5).

For simplicity, we write the decomposition of Y as

min
λ,x

‖Y − λ (x ◦ x ◦ x ◦ x)‖2F s.t. xT x = 1. (6)

Because (6) is a quadratic function of λ, the optimal weight

λ⋆ = Y • (x ◦ x ◦ x ◦ x). By replacing λ in (6) by λ⋆, the

optimization (6) becomes

min
x
‖Y − λ⋆(x ◦ x ◦ x ◦ x)‖2F

=‖Y‖2F + (λ⋆)2‖x ◦ x ◦ x ◦ x‖2F − 2λ⋆ (Y • (x ◦ x ◦ x ◦ x))

=‖Y‖2F − (Y • (x ◦ x ◦ x ◦ x))2 (7)

subject to xT x = 1. In [14], the authors modified the HOPM

algorithm to solve the above problem. In this paper, with a

different observation, we interpret the above problem as two

separate optimisation problems, which are then reformulated

as constrained eigenvalue decompositions. For a positive λ,

we maximise the inner product

max Y • (x ◦ x ◦ x ◦ x) subject to xT x = 1 , (8)

and minimise it for a negative λ

min Y • (x ◦ x ◦ x ◦ x) subject to xT x = 1 . (9)

The two optimization problems indeed can be solved in a sim-

ilar way, e.g., see Step 3 in Algorithm 1. The final solution

λ is the one with the larger absolute value. Since x is con-

strained to be unit-length vector, both optimisation problems

over sphere in (8) and (9) can be solved on Riemannian or

Stiefel manifold, e.g., using the Trust-Region solver [24]. The

above problems are related to eigenvalue decomposition of

symmetric tensors [12].

Let z = x ⊗ x. The minimisation problem in (9) reads

min zT Qz , s.t. z = x ⊗ x , zT z = 1 (10)

where Q is a symmetric matrix, obtained by stacking vec-

torization of slices Y(:, :, i, j) into a matrix, i.e., mode-(1,2)

matricization of Y. The above optimisation problem is a con-

strained eigenvalue decomposition, in which the eigenvector

z is a rank-1 symmetric matrix after being reshaped into a

matrix of size I × I.

In order to solve the above constrained optimisation prob-

lem, we construct the augmented Lagrangian function

L(x, y, z) = f (z) + yT (z − x ⊗ x) +
γ

2
‖z − x ⊗ x‖2 (11)

where γ > 0, and f (z) is the objective function of the mini-

mization of zT Qz subject to zT z = 1. Variables x, z and y are

sequentially updated in the following sequence

z = arg min f (z) + yT (z − x ⊗ x) +
γ

2
‖z − x ⊗ x‖2

= arg min
1

2
zT Qz + (y − γx ⊗ x)T z s.t. zT z = 1 (12)

x = arg min yT (z − x ⊗ x) +
γ

2
‖z − x ⊗ x‖2

= arg min ‖z +
y

γ
− x ⊗ x‖2 (13)

y← y + γ(z − x ⊗ x) . (14)

3.1. Updating z

The unit-length vector z is a minimiser to a quadratic prob-

lem over sphere (12), which indeed can be found in closed-

form [25, 26]. Let denote by Q = U diag(σ)UT , the eigen-

value decomposition of the matrix Q, where σ = [0 ≤ σ1 ≤
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Algorithm 1: Augmented Lagrangian Algorithm for Best

rank-1 Tensor Approximation

Input: Order-4 tensor Y of size I × I × I × I

Output: λ and x minimise 1
2
‖Y − λ x ◦ x ◦ x ◦ x)‖

begin
1 Q = [Y]([1,2]): mode-(1,2) matricization of Y
2 x− = tensor eig(Q), λ− = Y • (x− ◦ x− ◦ x− ◦ x−)

3 x+ = tensor eig(−Q), λ+ = Y • (x+ ◦ x+ ◦ x+ ◦ x+)
4 if |λ− | > |λ+ | then λ = λ−, x = x−
5 else λ = λ+, x = x+

function x = tensor eig(Q)

Input: Q: symmetric of size I2 × I2

Output: x minimises 1
2

zT Qz, s.t., xT x = 1, z = x ⊗ x

begin
6 Initialize y and z as zero vectors and γ > 0

repeat
% Update z

7 z = spherical quadratic prog(Q, y − γ x ⊗ x)

% Update x

8 T = reshape(z −
y

γ
, [I × I]), Ts =

1
2
(T + TT )

9 Ts ≈ σxxT

% Update y
10 y← y + γ(z − x ⊗ x)

11 Adjust γ← αγ if the objective function tents to a slow
convergence

until a stopping criterion is met

σ2 ≤ . . . ≤ σK] comprises eigenvalues of Q, U is an orthonor-

mal matrix of size K × K, K = I2, consists of eigenvectors of

Q. The vector z is computed as

z = U diag

(

1

λ − s1

, . . . ,
1

λ − sK

)

c (15)

where b = y − γx ⊗ x, c = UT b
‖b‖

, s = [s1, . . . , sK] is a

normalized version of the eigenvalues σ,

sk =
σk − σ1

‖b‖
+ 1 , (16)

and λ is the unique root in [0, 1] of the following secular

equation
K

∑

k=1

c2
k

(λ − sk)2
= 1 . (17)

3.2. Updating x

The vector x in (13) is the eigenvector associated with the

largest eigenvalue of the symmetric matrix Ts =
1
2
(T+TT ) of

size I× I, where T = Z+ 1
γ
Y, and z = vec(Z) and y = vec(Y).

3.3. The Proposed Algorithm

The proposed algorithm is summarised in Algorithm 1. The

sub-routine tensor eig implements the augmented La-

grangian Algorithm for the constrained optimisation in (10).

In step 7, updating z in (15) involves the quadratic program-

ming over sphere, which needs to compute the EVD of the

matrix Q and solve secular equations in (17). Since the

quadratic term Q does not change with iterations, the EVD

of Q is computed only once outside of the loop. The main

100 101 102

Iterations

0.05

0.06

0.07

0.08

0.09

 = 0.1
 = 0.5
 = 1.0
 = 2.0
 = 10.0
 = 50.0

0 100 200 300 400 500
Iterations

10-8

10-6

10-4

10-2

100

102

 = 0.1
 = 0.5
 = 1.0
 = 2.0
 = 10.0
 = 50.0

Fig. 1. Convergence behaviour and error of the rank-1 con-

straint ‖z − x ⊗ x‖ of the proposed algorithm for various γ in

solving the optimization (8).

cost of the algorithm is due to computing the first principal

eigenvector of the symmetric matrix Ts of size I × I.

The vectors y and z are initialised as zeros. The reg-

ularized parameter γ enforces the rank-1 constraint onto z.

When running the algorithm with a high value of γ, z quickly

holds the rank-1 constraint, but the objective function con-

verges slowly. This is illustrated in Fig. 1 for the case when

γ = 50 and tensors of size 10 × 10 × 10 × 10. Setting γ to

a relatively small value can make the algorithm unstable after

several to dozen of iterations. For example, see convergence

of the algorithm when γ = 0.1 in Fig. 1. In order to obtain a

good setting, we should run the algorithm in a few iterations

with various values of γ, then choose the setting which gives

a good convergence result.

4. SIMULATIONS

Example 1 (Best rank-1 tensor approximation to sym-

metric tensor of order-4) This example compares perfor-

mance of our proposed algorithm for the best rank-1 tensor

approximation for symmetric tensors of order-4, and the algo-

rithm using the Riemannian trust-region solver in the Manopt

toolbox [24]. We generated 1000 random tensors of size

I × I × I × I, where I = 10 or 20, then matricized them so that

they were symmetric tensors of order-4. The tensors were

normalized to have unit Frobenius norm. For each run, the
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Fig. 2. Empirical cumulative distribution functions of the rel-

ative errors returned by the augmented Lagrangian algorithm

and the Riemannian trust-region method.

best approximation error ε⋆ was defined as the smaller error

among approximation errors of the two methods: Augmented

Lagrangian method (Algorithm 1) and the Riemannian trust-

region

ε = ‖Y − λ x ◦ x ◦ x ◦ x‖2F = 1 − λ2 . (18)

Relative errors to the best approximation error ε−ε
⋆

ε⋆
is used to

assess success rate of the considered approximation.

The parameter γ was chosen among values [0.1, .2, .5, 1,2,

10, 50]. In Fig. 1, we illustrate the convergence behaviour of

the proposed algorithm with various selection of γ. The algo-

rithm completely failed when γ = 0.1. The objective function

diverged, while the rank-1 condition ‖z − x ⊗ x‖ did not pre-

serve. When γ = 10, the algorithm converged, but the error

of the constrained reduced slowly. For this decomposition,

γ = 0.5 or 1 is a good setting.

In Fig. 2, we plot empirical cumulative distribution func-

tions of 1000 relative errors. The results indicate that our al-

gorithm achieved higher success rate. For example, for the

case when I = 20, our algorithm attained an error less than

0.001 with a rate of 96.8%, whereas the trust-region solver

achieved a rate of 73.1% for the same error range. When

I = 10, the augmented Lagrangian algorithm had a success

rate of 92.5% for a similar accuracy of 0.001, while the trust-

region algorithm had a quite low rate of 47.4%.

Algorithms
ALSCAF LM Proposed

S
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E
 (

dB
)

-10

0

10

20

30

40

50

60
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SNR = 40 dB

Fig. 3. Comparison of squared angular errors of ALSCAP,

LM and the proposed algorithm in Example 2. Red crosses

show mean ± standard error of the mean.

Example 2 (Blind identification of 4 sources from 3 mix-

tures.) In this example, we illustrate the proposed algo-

rithm for a blind identification problem for 4 sources and

3 mixtures, X = HS + E. The sources S were synthesized

real-valued 2-QAM signals, the mixing matrix H of size

3 × 4 was randomly generated, and the Gaussian noise was

added into S such the Signal-Noise-Ratios SNR = 30 or 40

dB. More specifically, we estimated H from 100 second-

order derivatives of the cumulant generating function of the

observations [21], by sequentially solving the maximisa-

tion in (3), i.e., the case in (8). We verified performances

of the ALSCAF algorithm [21], the Levenberg-Marquardt

algorithm [15], and the proposed algorithm over 200 inde-

pendent runs. Distributions of the squared angular errors

(S AE(h, ĥ) = −20 log10 arccos hT ĥ

‖h‖2‖ĥ‖2
) of the considered al-

gorithms are compared in Fig. 3. The results indicate that

our algorithm achieved better performance than the ALSCAF

algorithm for both cases when SNR = 30 and 40 dB, and was

at most comparable to the LM algorithm.

5. CONCLUSIONS

Different from other existing algorithms for symmetric tensor

decompositions, we have interpreted the problem as two con-

strained eigenvalue decompositions in which eigenvectors are

rank-1 matrices. In our proposed augmented Lagrangian al-

gorithm, parameters are updated in closed-form, one vector z

is updated based on the quadratic programming over sphere,

and the vector x is the principal eigenvector of a symmetric

matrix. Simulation results have confirmed convergence of our

proposed algorithm, and its superior over the Trust-Region

solver over manifold. The algorithm can be extended to non-

negative symmetric tensor factorization, or symmetric tensors

of higher order.
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