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ABSTRACT

We present HF-ICA, a second-order ”Hessian-free” algo-
rithm for Infomax-ICA. Our approach achieves asymptot-
ically quadratic convergence while retaining the memory
footprint of first-order methods. Without any hyperparame-
ter tuning, we show better convergence properties than both
other approximate Newton-type methods and finely-tuned
stochastic Natural Gradient Descent on EEG and fMRI data.
A portable, multi-threaded and vectorized C++ implemen-
tation is made publicly available along with MATLAB and
Python interfaces.

Index Terms— Infomax-ICA, Hessian-Free Optimiza-
tion

1. INTRODUCTION

Blind source separation by Independent Component Analysis
(ICA) is a standard signal processing algorithm whose appli-
cations range from speech enhancement to biomedical signal
processing (EEG, MEG, MRI, 2-Photon Microsopy, etc.). In
its most basic formulation, one observes a set of random vari-
ables x = [x1, · · · , xM ] that are assumed to be linear combi-
nations of as many latent and statistically independent source
signals s = [s1, · · · , sM ]:

x = As

where A ∈ RM×M is an unknown, invertible mixing matrix.
The purpose of ICA is to estimate W̄ = A−1 given x only.

Different measures of statistical independence lead to dif-
ferent variants of ICA. In this paper, we restrict ourselves to
Infomax ICA [1], in which the mutual information (i.e., neg-
ative likelihood [2]) of the source signals is minimized:

W̄ = arg min
W

LS(W )

LS(W ) = − log |detW | −
M∑
m=0

N∑
n=0

log pm(Xm,n) (1)

Where N occurences of x are stacked row-wise to form a
data-matrix X = AS ∈ RM×N .

Negative log-likelihood minimization for ICA is usually
carried out via Stochastic Natural Gradient Descent (SNGD).
While this method possesses appealing theoretical properties
[3], getting good practical performance often requires heavy
hyperparameters tuning (e.g., learning rate, annealing factor,
mini-batch size). Existing second-order batch methods (New-
ton’s method, Relative ICA [4]) are either too memory inten-
sive or converge too slowly to offset their lack of hyperparam-
eters.

1.1. Contributions

Let ∇(W ) and H(W ) be the gradient and the Hessian of the
negative log-likelihood LS at W . Our paper makes the fol-
lowing contributions:

(a) An exact formula for y = H(W )v (for any v ∈ RM )

(b) An empirical estimator for Σ = vars∈S∇s(W )

(c) HF-ICA: A memory-efficient 2nd-order algorithm for In-
fomax ICA based on (a), plus a mini-batch selection pro-
cedure based on (b).

(d) A numerical evaluation of Relative Trust Region (RTR)-
ICA, SNGD and HF-ICA on EEG and fMRI data.

1.2. Related Work

Several Newton-type methods for Infomax ICA have been
developed by the scientific community over the past decade.
The exact Newton’s method [5] has a prohibitive O(M4)
memory footprint. Alternative methods that rely on diagonal
[4] or block-diagonal [6] approximate Hessians – while better
than batch NGD – are in practice much slower to converge
than finely tuned SNGD. The method presented in this pa-
per, HF-ICA, uses implicit and arbitrarily accurate Hessian
computations to achieve fast convergence while retaining
tractable memory consumption.

1.3. Organization

Section 2 provides background and intuition on Amari’s Nat-
ural Gradient and Hessian-free optimization. Section 3 de-
scribes the HF-ICA algorithm. Section 4 shows a variety of
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tricks that can be used to further speed up the convergence
of HF-ICA. Section 5 numerically evaluates the presented ap-
proach. Section 6 provides concluding remarks.

2. BACKGROUND

Let w = vec(W ) be the vector obtained by stacking the rows
of W together. We also define W = mat(w).

Iterative optimization methods construct a sequence of it-
erates wt that converges to a local/global minimum of the
objective function L:

wt+1 = wt + αtdt (2)

lim
t→∞

∂L

∂wt
= 0

Where αt and dt are respectively a step-size and a descent di-
rection chosen at time t. Different choices for these quantities
lead to different optimization methods.

2.1. Natural Gradient Descent

The ordinary gradient of L at wt is the direction of steepest
ascent per change in L2-norm:

∇(wt) ∝ arg max
∂wt:L2-DIST(wt,wt+∂wt)<ε

L(wt + ∂wt)

Following the ordinary gradient therefore makes the implicit
assumption that candidate solutions close to each other (in the
L2 sense) have similar semantics (e.g., induce similar proba-
bility distributions on the observed data). There is no reason
to believe that this is true for maximum-likelihood estimation.

On the other hand, the natural gradient ∇̃ of L at wt is the
direction of steepest ascent per change in KL-divergence:

∇̃t ∝ arg max
∂wt:KL(P (wt),P (wt+∂wt))<ε

L(wt + ∂wt)

Where P (w) is the distribution on the recovered source sig-
nals under the unmixing matrix induced by w.

Choosing dt = ∇̃t for (1) yields the Natural Gradient
Descent (NGD) algorithm, which has an elegant formulation
for Infomax-ICA [3]:

Wt+1 = Wt − αt(I − φ(St)S
T
t )Wt

φ(sm,n) = −∂ log p(sm,n)

∂sm,n

Here, St = WXt, where Xt denotes a subset (i.e., mini-
batch) of X chosen at time t. NGD indeed retains conver-
gence in a stochastic setting.

2.2. Hessian-free Optimization

In Newton’s method, dt = nt minimizes the local quadratic
approximation of L at wt:

nt = arg min
d

(L(wt) +∇(wt)
Td +

1

2
dTH(wt)d)

nt = −H(wt)
−1∇(wt)

αt = 1

Note that H(wt) ∈ RM2×M2

is usually too big to fit in
memory, hence the emergence of diagonal and block-diagonal
approximations.

Alternatively, nt can be obtained by solving the linear sys-
tem:

H(wt)nt = −∇(wt) (3)

The key insight of Hessian-free optimization [7] is that solv-
ing this system iteratively (using e.g., the conjugate gradient
method) does not require the explicit knowledge of H(wt)
but only that of yvt = H(wt)v for v ∈ RM .

Note that the O(ε) approximation:

yvt ≈
∇(wt + εv)−∇(wt)

ε
0 < ε� 1 (4)

is rarely accurate enough for practical use. In the following
section, we derive the exact form of yvt .

3. HESSIAN-FREE ICA

Note that (4) evolves into a derivative when ε→ 0:

yvt
def
=

∂

∂ε
∇(wt + εv)|ε=0 = Rv{∇(wt)}

Different values of v lead to different operators Rv{.} (we
fix v and drop the subscript from now on). As a differential
operator,R{.} obeys the following rules [8]:

R{w} = v

R{f(w) + g(w)} = R{f(w)}+R{g(w)}
R{f(g(w))} = f ′(g(w)) ◦ R{g(w)}

Let {Wt, V, Y
V
t } = mat({wt,v,y

v
t }). Hessian-vector prod-

ucts for Infomax-ICA can then be computed exactly:

Y Vt = R{∇L(W )}
Y Vt = R{W−1t )T − φ(St)X

T
t }

= R{(W−1t )T } −R{φ(St)X
T
t }

= −(W−1t VW−1t )T − ψ(St)X
T
t (5)
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With

ψ(St) = R{φ(St)}
= φ′(St) ◦ R{WXt}
= φ′(St) ◦ V Xt

Where ◦ and φ′ are respectively element-wise multiplication
and element-wise differentiation operators. Common choices
for φ are:

φ(sm,n) = tanh(sm,n)

φ(sm,n) = sm,n + sign(kurtosis(sm)) tanh(sm,n)

Giving rise to respectively the original [1] and extended [9]
Infomax ICA algorithm.

The linear system (3) can be solved using any exist-
ing iterative solver. To keep HF-ICA simple, we used the
Conjugate Gradient (CG) method, aborting the procedure
whenever a direction of negative curvature was found (CG
requires H(wt) to be positive definite). There exists a vari-
ety of solvers that can deal with indefinite Hessians, such as
BiCG-STAB or GMRES.

4. SPEEDING-UP HF-ICA

4.1. Stopping Criterion for CG

Solving the above linear system iteratively yields a solution
ñt which can be made arbitrarily close to the true Newton
direction nt. In practice, however, it could be desirable to
avoid Newton’s exact direction – H(wt) can be indefinite –
or unnecessary CG iterations.

We tried stopping criterions based on Hessian-vector
products variance [10], quadratic approximation minimiza-
tion [7], and residual norms. The latter seemed to work best:

ñTt Hñt < 0 (negative curvature)

or ‖Hñt +∇(wt)‖2 < ε = 10−3 (convergence reached)

4.2. Damping

Since H can be indefinite, it is common to solve instead:

(H(wt) + λtI)nt = −∇(wt)

Where λt is a damping parameter, updated across iterations
as follow:

λt+1 = (2/3)λt if ρt > 0.75

λt+1 = (3/2)λt if ρt < 0.25

With

ρt =
L(wt+1)− L(wt)

q
(last)
t − q(0)t

Where q(0)t and q(last)t denote the value of the local quadratic
model of L at respectively the first and last iteration of CG.

4.3. Line-search

The true Newton direction nt is naturally well scaled. This
may not be the case of ñt when Ht is indefinite or ε is large.
Many methods exist for finding quasi-optimal step-sizes:

αt = arg min
α

g(α) = arg min
α

L(wt + αñt)

We chose one based on polynomial interpolations of g (see
[11] for more details). This procedure be not often needed in
practice (i.e., ñt is generally close to nt).

4.4. Adaptive mini-batch size

We’ve been until now rather vague on how to choose the mini-
batch size |Xt|. Choosing it naively can break the conver-
gence of Hessian-free algorithms. Instead, Byrd et al. [10]
suggest to select |Xt| based on Σt = vars∈S∇s(wt). Specif-
ically, this mini-batch size is augmented iff:

‖Σt‖1
|Xt|

≤ (θ‖∇(wt)‖2)2

and becomes

|Xt+1| =
‖Σt‖1

(θ‖∇(wt)‖2)2

With:

Σt =
1

|Xt| − 1

∑
x∈Xt

(
φ(s)xT − φ(St)X

T
t

|Xt|

)◦◦
=

1

|Xt| − 1

(
φ(St)

◦◦XT
t

◦◦ − (φ(St)X
T
t )◦◦

|Xt|

)
Where ◦◦ denotes element-wise squaring.

5. NUMERICAL EXPERIMENTS

It has been suggested that NGD could be more theoretically
sound than Newton-type methods for learning tasks, while the
latter could achieve faster convergence in optimization prob-
lems [12]. In this section, we compare the quality of the lo-
cal minima found by various optimization methods (SNGD,
RTR-ICA, HF-ICA) on EEG and fMRI data. FAST-ICA was
not included because it maximizes likelihood only approxi-
mately [13]. Whether or not achieving lower mutual infor-
mation (i.e., higher maximum-likelihood) for the recovered
sources translates to better separation in practice is beyond
the scope of this paper.

Two different implementations of SNGD are evaluated:

(a) Heuristics: the learning rate and annealing factor follow
heuristics provided in the EEGLAB [14] software:

lrate =
6.5× 10−4

loge(NIC)

anneal = 0.9
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(b) Fine-Tuned: the learning rate and annealing factor are
found using a grid-search:

lrate ∈ {10−4, 2× 10−4, · · · , 9× 10−4}
anneal ∈ {0.85, · · · , 0.91, · · · , 0.99}

The configuration achieving the best local minimum is
retained.

We report here the results observed for Infomax-ICA. The
same behaviors were observed for the extended algorithm
(also implemented in our software package).

5.1. EEG

60-channels motor imagery EEG data were obtained from the
BCI Competition IV datasets 1. Pre-whitening and dimen-
sionality reduction via PCA was applied to retain 99.9% of
the data variance, and ICA was ran on the resulting 29 ×
190, 594 data-points.

Fig. 1. Convergence speed of HF-ICA on EEG data

As shown in Figure 1, RTR-ICA and non-tuned NSGD
converge to the same sub-optimal local minimum. HF-ICA
reaches the same optimum as Fine-tuned NSGD faster (50 vs
117 epochs).

5.2. fMRI

We used publicly available fMRI data obtained from one hu-
man subject during a language task 2 (316 frames of 104 ×
90× 72 voxels). Pre-whitening and dimensionality reduction
was applied to retain 99.9% of the data variance, and ICA was
ran on the resulting 167× 673, 920 data-points.

As shown in Figure 2, SNGD reaches a poor local opti-
mum when not properly tuned. Fine-tuned NSGD and HF-
ICA again reaches the same local optimum as NSGD faster
(600 vs 800 iterations). RTR-ICA didn’t reach convergence
after 10,000 iterations.

1http://www.bbci.de/competition/iv/desc_1.html
2http://humanconnectome.org

Fig. 2. Convergence speed of HF-ICA on fMRI data

5.3. Execution time

Table 5.3 summarized the runtime of the aforementioned
benchmarks. The same stopping criterion was used in all
cases: ‖wt+1 −wt‖2 < 10−4.

RTR-ICA HF-ICA SNGD (Tuned) Grid-search
EEG 43s 20s 66s 1h30m
fMRI N/A 6h 2h >60h

Table 1. Runtime of HF-ICA

Note that each iteration of HF-ICA can involve many
Hessian-vector products computations and be substantially
more expensive than each epoch of NSGD. The additional
parallelism induced by larger batch sizes mitigates this effect.
CG preconditioning [15] could further improve HF-ICA.

6. CONCLUSIONS

In this paper, we presented a second-order method for Info-
max ICA based on hessian-Free optimization. Performance
similar to SNGD and superior to Relative ICA are observed –
without requiring any hyperparameter tuning. The proposed
approach is safe for practical use and an optimized package is
available for C++, Python and Matlab 3.

3https://github.com/ptillet/hf-ica
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