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ABSTRACT

We present HF-ICA, a second-order “Hessian-free” algo-
rithm for Infomax-ICA. Our approach achieves asymptot-
ically quadratic convergence while retaining the memory
footprint of first-order methods. Without any hyperparame-
ter tuning, we show better convergence properties than both
other approximate Newton-type methods and finely-tuned
stochastic Natural Gradient Descent on EEG and fMRI data.
A portable, multi-threaded and vectorized C++ implemen-
tation is made publicly available along with MATLAB and
Python interfaces.

Index Terms— Infomax-ICA, Hessian-Free Optimiza-
tion

1. INTRODUCTION

Blind source separation by Independent Component Analysis
(ICA) is a standard signal processing algorithm whose appli-
cations range from speech enhancement to biomedical signal
processing (EEG, MEG, MRI, 2-Photon Microsopy, etc.). In
its most basic formulation, one observes a set of random vari-
ables x = [x1,- - -, )] that are assumed to be linear combi-
nations of as many latent and statistically independent source
signals s = [s1, -+, Sm):

x = As

where A € RM*M is an unknown, invertible mixing matrix.
The purpose of ICA is to estimate W = A~! given x only.

Different measures of statistical independence lead to dif-
ferent variants of ICA. In this paper, we restrict ourselves to
Infomax ICA [1], in which the mutual information (i.e., neg-
ative likelihood [2]) of the source signals is minimized:

W = argmin Lg(W)
w

M N
LS(W) = _log | deth - Z Zlngm(Xm,n) (1)

m=0n=0

Where N occurences of x are stacked row-wise to form a
data-matrix X = AS € RMxN,
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Negative log-likelihood minimization for ICA is usually
carried out via Stochastic Natural Gradient Descent (SNGD).
While this method possesses appealing theoretical properties
[3], getting good practical performance often requires heavy
hyperparameters tuning (e.g., learning rate, annealing factor,
mini-batch size). Existing second-order batch methods (New-
ton’s method, Relative ICA [4]) are either too memory inten-
sive or converge too slowly to offset their lack of hyperparam-
eters.

1.1. Contributions

Let V(W) and H (W) be the gradient and the Hessian of the
negative log-likelihood Lg at W . Our paper makes the fol-
lowing contributions:

(a) An exact formula fory = H(W)v (forany v € RM)

(b) An empirical estimator for & = varges V(W)

(c) HF-ICA: A memory-efficient 2nd-order algorithm for In-
fomax ICA based on (a), plus a mini-batch selection pro-
cedure based on (b).

(d) A numerical evaluation of Relative Trust Region (RTR)-
ICA, SNGD and HF-ICA on EEG and fMRI data.

1.2. Related Work

Several Newton-type methods for Infomax ICA have been
developed by the scientific community over the past decade.
The exact Newton’s method [5] has a prohibitive O(M*)
memory footprint. Alternative methods that rely on diagonal
[4] or block-diagonal [6] approximate Hessians — while better
than batch NGD - are in practice much slower to converge
than finely tuned SNGD. The method presented in this pa-
per, HF-ICA, uses implicit and arbitrarily accurate Hessian
computations to achieve fast convergence while retaining
tractable memory consumption.

1.3. Organization

Section 2 provides background and intuition on Amari’s Nat-
ural Gradient and Hessian-free optimization. Section 3 de-
scribes the HF-ICA algorithm. Section 4 shows a variety of
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tricks that can be used to further speed up the convergence
of HF-ICA. Section 5 numerically evaluates the presented ap-
proach. Section 6 provides concluding remarks.

2. BACKGROUND

Let w = vec(W) be the vector obtained by stacking the rows
of W together. We also define W = mat(w).

Iterative optimization methods construct a sequence of it-
erates w; that converges to a local/global minimum of the
objective function L:

Wit1 = Wi + aydy )
oL
lim — =0
fron By

Where a; and d; are respectively a step-size and a descent di-
rection chosen at time ¢. Different choices for these quantities
lead to different optimization methods.

2.1. Natural Gradient Descent

The ordinary gradient of L at w; is the direction of steepest
ascent per change in L2-norm:

V(wy)

arg max
Ow:L2-DIST(w,w;+0w;)<e

L(Wt + 8Wt)

Following the ordinary gradient therefore makes the implicit
assumption that candidate solutions close to each other (in the
L2 sense) have similar semantics (e.g., induce similar proba-
bility distributions on the observed data). There is no reason
to believe that this is true for maximum-likelihood estimation.
On the other hand, the natural gradient V of L at w; is the

direction of steepest ascent per change in KL-divergence:
ﬁt 0.8

arg max L(w; + 0wy)

OwKL(P(wy),P(wi+0wy))<e

Where P(w) is the distribution on the recovered source sig-
nals under the unmixing matrix induced by w.

Choosing d; = @t for (1) yields the Natural Gradient
Descent (NGD) algorithm, which has an elegant formulation
for Infomax-ICA [3]:

Wig1 = Wi — ao(I — ¢(S;)SEYW,

. 0 IOg p(Sm,n)
OSm.n

¢)(3m,7L) -

Here, S; = WX, where X, denotes a subset (i.e., mini-
batch) of X chosen at time £. NGD indeed retains conver-
gence in a stochastic setting.

2.2. Hessian-free Optimization

In Newton’s method, d; = n; minimizes the local quadratic
approximation of L at wy:

n; = argmin(L(w;) + V(w;)'d + %dTH(wt)d)
d

n; = —H(Wt)_1V(Wt)
Qp = 1

Note that H(w;) € RM**M” js ysually too big to fit in
memory, hence the emergence of diagonal and block-diagonal
approximations.

Alternatively, n; can be obtained by solving the linear sys-
tem:

H(w)n, = —V(wy) 3)

The key insight of Hessian-free optimization [7] is that solv-
ing this system iteratively (using e.g., the conjugate gradient
method) does not require the explicit knowledge of H (wy)
but only that of y¥ = H(w;)v for v € RM,

Note that the O(e) approximation:

o V(W +ev) — V(wy)
Yy =~

0<ex1 @)
€

is rarely accurate enough for practical use. In the following
section, we derive the exact form of y7.

3. HESSIAN-FREE ICA

Note that (4) evolves into a derivative when € — 0:

e 8
yf d:f aV(Wt + 6V)|e:0 = RV{V(Wt)}

Different values of v lead to different operators Ry {.} (we
fix v and drop the subscript from now on). As a differential
operator, R{.} obeys the following rules [8]:

R{w}=v
R{f(w) +g(w)} = R{f(W)} + R{g(w)}
R{f(g(w))} = f'(g(w)) o R{g(w)}

Let {W;,V,Y,V} = mat({w, v,yY}). Hessian-vector prod-
ucts for Infomax-ICA can then be computed exactly:
Y," = R{VL(W)}
Y = R{WHT — o(S) X[}
= R{W, )"} = R{&(S) X[}
= *(Wt_lth_l)T - 1/’(St)XtT ®)
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With

7/1(St) = R{¢(St)}
= ¢/(St) o R{W X}
=¢'(S;) o VX

Where o and ¢’ are respectively element-wise multiplication
and element-wise differentiation operators. Common choices
for ¢ are:

O(Smn) = tanh(sy, )
O(Sm.n) = Sm,n + sign(kurtosis(s,,)) tanh(s, )

Giving rise to respectively the original [1] and extended [9]
Infomax ICA algorithm.

The linear system (3) can be solved using any exist-
ing iterative solver. To keep HF-ICA simple, we used the
Conjugate Gradient (CG) method, aborting the procedure
whenever a direction of negative curvature was found (CG
requires H (w;) to be positive definite). There exists a vari-
ety of solvers that can deal with indefinite Hessians, such as
BiCG-STAB or GMRES.

4. SPEEDING-UP HF-ICA

4.1. Stopping Criterion for CG

Solving the above linear system iteratively yields a solution
n; which can be made arbitrarily close to the true Newton
direction n;. In practice, however, it could be desirable to
avoid Newton’s exact direction — H(w;) can be indefinite —
or unnecessary CG iterations.

We tried stopping criterions based on Hessian-vector
products variance [10], quadratic approximation minimiza-
tion [7], and residual norms. The latter seemed to work best:

n Hi; <0
or ||Hiy + V(wy)llz <e=10"3

(negative curvature)

(convergence reached)

4.2. Damping
Since H can be indefinite, it is common to solve instead:
(H(Wt) + )\tI)nt = _V(Wt)

Where )\; is a damping parameter, updated across iterations
as follow:

Aes1 = (2/3)
Aes1 = (3/2)

if pr > 0.75
if pr < 0.25
With
~ L(wyg) — L(wy)
Pt = (ast) _(0)
gt — 4

Where ¢{* and ¢{"**") denote the value of the local quadratic
model of L at respectively the first and last iteration of CG.

4.3. Line-search

The true Newton direction n; is naturally well scaled. This
may not be the case of n; when H, is indefinite or ¢ is large.
Many methods exist for finding quasi-optimal step-sizes:

oy = argmin g(«) = arg min L(w; + ang)
[e3% [e3%

We chose one based on polynomial interpolations of g (see
[11] for more details). This procedure be not often needed in
practice (i.e., n, is generally close to n).

4.4. Adaptive mini-batch size

We’ve been until now rather vague on how to choose the mini-
batch size | X;|. Choosing it naively can break the conver-
gence of Hessian-free algorithms. Instead, Byrd et al. [10]
suggest to select | X;| based on 3; = varsesVs(w:). Specif-
ically, this mini-batch size is augmented iff:

IZdh 19 (o) la)?

| Xl —
and becomes
(121
X =
Xl = Gl
With:
_ 1 r O(S)X]\eo
2t_|)(t1x§t<¢(s)x 1] )
1 oo (p(Sy)X[)°
— ooXT _ t
|Xt\—1<¢(st) ! | X4 )

Where °° denotes element-wise squaring.

5. NUMERICAL EXPERIMENTS

It has been suggested that NGD could be more theoretically
sound than Newton-type methods for learning tasks, while the
latter could achieve faster convergence in optimization prob-
lems [12]. In this section, we compare the quality of the lo-
cal minima found by various optimization methods (SNGD,
RTR-ICA, HF-ICA) on EEG and fMRI data. FAST-ICA was
not included because it maximizes likelihood only approxi-
mately [13]. Whether or not achieving lower mutual infor-
mation (i.e., higher maximum-likelihood) for the recovered
sources translates to better separation in practice is beyond
the scope of this paper.
Two different implementations of SNGD are evaluated:

(a) Heuristics: the learning rate and annealing factor follow
heuristics provided in the EEGLAB [14] software:

6.5 x 1074
log,(Nrc)
anneal = 0.9

Irate =
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(b) Fine-Tuned: the learning rate and annealing factor are
found using a grid-search:

Irate € {10742 x 107%,--- ;9 x 107*}
anneal € {0.85,---,0.91,---,0.99}

The configuration achieving the best local minimum is
retained.

We report here the results observed for Infomax-ICA. The
same behaviors were observed for the extended algorithm
(also implemented in our software package).

5.1. EEG

60-channels motor imagery EEG data were obtained from the
BCI Competition IV datasets !. Pre-whitening and dimen-
sionality reduction via PCA was applied to retain 99.9% of
the data variance, and ICA was ran on the resulting 29 x
190, 594 data-points.

Natural SGD [Heuristics]
Natural SGD [Fine-Tuned]
RTR-ICA

HF-ICA

Negative log-likelihood
®

Fig. 1. Convergence speed of HF-ICA on EEG data

As shown in Figure 1, RTR-ICA and non-tuned NSGD
converge to the same sub-optimal local minimum. HF-ICA
reaches the same optimum as Fine-tuned NSGD faster (50 vs
117 epochs).

5.2. fMRI

We used publicly available fMRI data obtained from one hu-
man subject during a language task 2 (316 frames of 104 x
90 x 72 voxels). Pre-whitening and dimensionality reduction
was applied to retain 99.9% of the data variance, and ICA was
ran on the resulting 167 x 673, 920 data-points.

As shown in Figure 2, SNGD reaches a poor local opti-
mum when not properly tuned. Fine-tuned NSGD and HF-
ICA again reaches the same local optimum as NSGD faster
(600 vs 800 iterations). RTR-ICA didn’t reach convergence
after 10,000 iterations.

"http://www.bbci.de/competition/iv/desc_1.html
2http://humanconnectome.org

2540

o
a

2.60

- Natural SGD [Heuristics]
— Natural SGD [Fine-Tuned]

o
3

22.55p
v

— RTR-ICA
— HF-ICA

\
22.50f

IS
o]

22.45

22.40

IS
S

w
G

Negative log-likelihood

w
<]

N
@

Fig. 2. Convergence speed of HF-ICA on fMRI data

5.3. Execution time

Table 5.3 summarized the runtime of the aforementioned
benchmarks. The same stopping criterion was used in all
cases: ||wir1 — w2 < 1074

RTR-ICA | HF-ICA | SNGD (Tuned) | Grid-search
EEG | 43s 20s 66s 1h30m
fMRI | N/A 6h 2h >60h

Table 1. Runtime of HF-ICA

Note that each iteration of HF-ICA can involve many
Hessian-vector products computations and be substantially
more expensive than each epoch of NSGD. The additional
parallelism induced by larger batch sizes mitigates this effect.
CG preconditioning [15] could further improve HF-ICA.

6. CONCLUSIONS

In this paper, we presented a second-order method for Info-
max ICA based on hessian-Free optimization. Performance
similar to SNGD and superior to Relative ICA are observed —
without requiring any hyperparameter tuning. The proposed
approach is safe for practical use and an optimized package is
available for C++, Python and Matlab 3,

3https://github.com/ptillet/hf-ica
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