
ENHANCING ICA PERFORMANCE BY EXPLOITING SPARSITY: APPLICATION TO
FMRI ANALYSIS

Zois Boukouvalas1, Yuri Levin-Schwartz2, and Tülay Adalı2
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ABSTRACT

Independent component analysis (ICA) is a powerful method
for blind source separation based on the assumption that
sources are statistically independent. Though ICA has proven
useful and has been employed in many applications, complete
statistical independence can be too restrictive an assumption
in practice. Additionally, important prior information about
the data, such as sparsity, is usually available. Sparsity is
a natural property of the data, a form of diversity, which, if
incorporated into the ICA model, can relax the independence
assumption, resulting in an improvement in the overall sepa-
ration performance. In this work, we propose a new variant of
ICA by entropy bound minimization (ICA-EBM)—a flexible,
yet parameter-free algorithm—through the direct exploitation
of sparsity. Using this new SparseICA-EBM algorithm, we
study the synergy of independence and sparsity through simu-
lations on synthetic as well as functional magnetic resonance
imaging (fMRI)-like data.

Index Terms— independent component analysis, spar-
sity, fMRI

1. INTRODUCTION

Independent component analysis (ICA) is a data-driven
method that provides a unique decomposition of a dataset
solely through the assumption that sources are statistically in-
dependent and has found wide use in a variety of applications.
Although statistical independence is a natural assumption in
many cases, there are many practical applications where such
a strong assumption is unrealistic. Often in these cases, some
important prior information about the data is available and in-
corporating it into the ICA model will result in better overall
separation performance.

A widely used approach for incorporating prior informa-
tion into the ICA framework is through the use of constrained
independent component analysis (C-ICA) [1], which incor-
porates prior information using equality and inequality con-
straints under a Lagrangian framework. Such prior informa-
tion can be about the task in functional magnetic resonance
imaging fMRI analysis and can be included as constraints on
the mixing matrix columns [2–4] or spatial maps [1, 5, 6].

While this approach is practical, such constraints have to be in
an exact functional form, something that is not always avail-
able in practice. Another form of prior information that can be
considered are natural properties of the data, such as sparsity.

There are many ways to impose sparsity into the ICA
model, such as by selecting a density model that favors sparse
distributions [7, 8] or by using sparsity transformations [9]
following ICA. Although, selecting the source distribution
would allow the ICA model to enjoy the desirable large sam-
ple properties of the ML formulation [10, 11], the model
would be limited to a specific type of sparse distribution [10].
Additionally, sparsity transformations are an indirect way
of imposing sparsity and do not allow direct way to control
independence versus sparsity.

The main contribution of this work is the development of
a new ICA algorithm that takes the sparsity of each individ-
ual source into account. We incorporate sparsity into the ICA
algorithm, entropy bound minimization (ICA-EBM) [12], by
introducing a weighting factor to the ICA cost function to bal-
ance the contribution of sparsity for each of the individual
sources. ICA-EBM is a flexible and parameter-free ICA al-
gorithm that can separate sources from a wide range of distri-
butions. The new SparseICA-EBM algorithm inherits all the
advantages of ICA-EBM, namely its flexibility, though with
enhanced performance due to the exploitation of the sparsity
and allows the user to balance the roles of independence and
sparsity.

The remainder of this paper is organized as follows. In
Section 2, we provide the necessary background on ICA. Sec-
tion 3, provides the mathematical development of SparseICA-
EBM. In Section 4, we demonstrate the effectiveness of
SpaseICA-EBM through sparse simulated data as well as
simulated fMRI-like data. The conclusions are presented in
Section 5.

2. BACKGROUND

2.1. Independent Component Analysis

LetN statistically independent sources s(t) = [s1(t), . . . , sN (t)]>

be mixed through an unknown invertible mixing matrix A ∈
RN×N so that we obtain mixtures x(t) = [x1(t), . . . , xN (t)]>,
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through the linear model

x(t) = As(t), t = 1, . . . , T,

where t denotes the discrete time index and (·)> the trans-
pose. The goal of ICA is to estimate a demixing matrix
W ∈ RN×N to yield maximally independent source esti-
mates y(t) = Wx(t). A natural cost function to achieve
such a separation is mutual information (MI), which is de-
fined as the Kullback-Leibler (KL)-distance between the joint
source density and the product of the marginal estimated
source densities. Therefore, the MI cost function is given by

JICA(W) =

N∑
n=1

H(yn)− log |det(W)| −H(x), (1)

where yn = w>n x and the termsH(yn) andH(x) are the (dif-
ferential) entropy of the source estimates and the mixtures, re-
spectively. Note that the term H(x) is independent of W and
can be treated as a constant C. The minimization of the MI
is equivalent to the maximization of the maximum likelihood
(ML) cost function, hence, making available all the theoreti-
cal advantages associated with the ML theory [10] for large
sample sizes.

It is impractical to try to exploit prior information in (1) as
it requires either complete knowledge of the demixing matrix
or of the sources, information that is not usually available. As-
suming that the demixing matrix is orthogonal would loosen
this strict requirement, but would unecessarily limit the solu-
tion space. Moreover, direct implementation of (1) implies
that each latent source has the same distribution, which is un-
realistic in many practical applications. All of these issues
can be avoided by rewriting (1) and its gradient with respect
to each row of W, wm, m = 1, . . . N . Thus, by using this
decoupling approach [12, 13], the MI cost function can be
written as

JICA(wm) =

N∑
n=1

H(yn)−log
∣∣h>mwm

∣∣−Cm, m = 1, . . . , N,

(2)
where hm is a unit vector that is perpendicular to all row vec-
tors of W except wm and Cm is a constant. The gradient of
(2) can be written in a decoupled form and is given by

∂JICA(wm)

∂wm
= −E {φ(ym)x} − hm

h>mwm
,

where φ(ym) = ∂ log p(ym)
∂ym

is called the score function and
the probability density function (PDF) of the mth estimated
source, p(ym), can be adaptively determined for each esti-
mated source independently.

3. MATHEMATICAL DEVELOPMENT AND
IMPLEMENTATION

The formal definition for sparsity is given through the `0 norm
and is defined as the number of non-zero coefficients from a

vector y ∈ RT

||y||0 = #{yi 6= 0; j = 1, . . . T}. (3)

Although the incorporation of (3) into the ICA framework is a
direct way to impose sparsity, the `0 norm is computationally
intractable. Instead, the `1 norm, defined as the sum of the
absolute values of a vector’s coefficients, serves as a surro-
gate sparsity regularizer of the `0 norm in many optimization
problems [14–16]. We can promote the synergy between in-
dependence and sparsity through the addition of the `1 regu-
larization term to (2), which we expect to improve separation
performance when the underlying sources are truly sparse.

The proposed decoupled sparsity promoting ICA cost
function is thus given by

J(wm) = JICA(wm) + λmf(ym), m = 1, . . . , N, (4)

where f(ym) = ||ym||1 is the regularization term and λm
is called the sparsity parameter. The `1 norm is a non-
differentiable function, so it is replaced by the the sum of
multi-quadratic functions [17], given by

f(ym) = lim
ε→0

T∑
t=1

√
y2
mt + ε,

where ε is the smoothing parameter. Therefore, the proposed
gradient can be written as

∂

∂wm
J(wm) =

∂

∂wm

(
JICA(wm) + λm lim

ε→0
f(ym)

)

=
∂JICA(wm)

∂wm
+ λm lim

ε→0

T∑
t=1

ymt√
y2
mt + ε

x.

Due to its ability to maximize independence in an efficient
manner through the use of four measuring functions favoring
bimodal, symmetric or skewed, heavy-tailed or not heavy-
tailed distributions [12], ICA-EBM serves as the algorithm
for the direct integration of (4). The new SparseICA-EBM
not only provides flexible density matching but also yields
solutions with variable levels of sparsity.

4. EXPERIMENTAL RESULTS

We demonstrate the performance of SparseICA-EBM (4),
in terms of its separation power, using simulated sparse
sources as well as simulated fMRI-like data. We compare the
SparseICA-EBM algorithm with the original ICA-EBM algo-
rithm. Additionally, due to its popularity in many applications
including fMRI analysis, we also compare SparseICA-EBM
with two implementations of the Infomax algorithm [7].
One version is based on the natural gradient optimization
framework (Infomax-NG) and the other one is based on a
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quasi-Newton technique Broyden, Fletcher, Goldfarb, and
Shanno (BFGS) [18], which we call Infomax-BFGS. The
hardware used in the computational studies is part of the
UMBC High Performance Computing Facility (HPCF), for
more information see hpcf.umbc.edu.

4.1. Simulated Sparse Sources

For the first set of experiments, we generate 20 simulated
sources, each of which is distributed according to a general-
ized Gaussian distribution (GGD) with sample size T = 103.
The PDF of each source is given by [19]

p(x;β, σ) = η exp
(
− x

2σ

)2β

, x ∈ R

where η = β

2
1
2β Γ( 1

2β )σ
. The shape parameter, β, controls the

peakedness and spread of the distribution as well as its spar-
sity. If β < 1, the distribution is more peaky than the Gaus-
sian with heavier tails, and if β > 1, it is less peaky with
lighter tails. Thus, as β → 0 the distribution becomes more
sparse.

To verify the sparse nature of the sources used for the first
set of the experiments, we generate 20 sources with sample
size T = 104 and shape parameter β from the range [0.1, 0.5]
with a step size of 0.05. For each specific source, we measure
the sparsity level using the Gini Index as described in [20]
and average over the sources that correspond to a specific β.
In Fig. 1, we see that as we increase β, sources become less
sparse.
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Fig. 1. Average Gini Index as a function of the shape param-
eter, β. The Gini Index is normalized and 1 corresponds to
very sparse sources while 0 to dense sources.

To evaluate the performance of the algorithms, we use
the average-interference-to-signal ratio (ISR) as in [13]. For
SparseICA-EBM, the algorithm parameters are λ = 104 and
ε = 10−2 and are determined based on a grid search selection.
All results are the average of 300 independent runs.

In Fig. 2, we display the normalized ISR as a function of
β. We observe that for small values of β, i.e., highly sparse
case, SparseICA-EBM exhibits better performance. On the
other hand, ICA-EBM starts performing better than the other
algorithms as we increase β, i.e., decrease sparsity. It is worth
mentioning that Infomax-NG often fails to converge as β in-
creases revealing its poor performance under this experimen-

tal setup. On the other hand, Infomax-BFGS shows reason-
able performance especially for small values of β.
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Fig. 2. Performance comparison of four ICA algorithms in
terms of the normalized average ISR as a function of shape
parameter, β, for 20 sources with T = 103. Each point is the
result of 300 independent runs.

In Fig. 3, we display the normalized ISR as a function of
the sample size. To study the case where sources are very
sparse we generate all sources using β = 0.1. As the sample
size increases, SparseICA-EBM and ICA-EBM perform bet-
ter than the other two algorithms, since the large sample size
enables an accurate approximation of the differential entropy
of the estimated sources. When the sample size becomes
greater than 103, Infomax-BFGS starts providing highly inac-
curate results, due to algorithmic issues in the approximation
of the inverse of the Hessian matrix.
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Fig. 3. Performance comparison of four ICA algorithms in
terms of the normalized average ISR as a function of sample
size, T , for 20 sources with β = 0.1. Each point is the result
of 300 independent runs.

Finally, in Fig. 4, we display the normalized ISR as a func-
tion of the number of sources where for each source T = 103

and β = 0.1. It is clear from Fig. 4 that SparseICA-EBM
shows the best performance. Infomax-BFGS performs well
when the number of sources is small since the optimization
procedure is performed in a low dimensional space. This re-
veals the benefit of employing the decoupling approach, since

2534



the reduction to a set of vector optimization problems avoids
over-complicated surfaces for the cost function.
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Fig. 4. Performance comparison of four ICA algorithms in
terms of the normalized average ISR as a function of number
of sources, N , with T = 103 and β = 0.1. Each point is the
result of 300 independent runs.

4.2. Simulated fMRI-like Data

For the second set of experiments, we used simulated fMRI-
like sources at different contrast-to-noise ratio (CNR) levels.
Estimated spatial fMRI sources tend to have sparse distribu-
tions [21], leading to the popularity of sparsity favoring algo-
rithms such as Infomax.

For our experiment, we generate 20 spatial maps using
10 subjects. Each spatial mask is a 100 × 100 image with a
baseline intensity of 800. The length of the experiment is 260
samples. Rician noise is added to each dataset at specified
CNR value. The parameters for SparseICA-EBM, λ = 104

and ε = 3.8, are determined based on a grid search selection
method performed on noiseless data.

The first step in processing the fMRI like-data consists
of the application of principal component analysis to each
dataset individually. Since 20 sources are generated for each
dataset, the dimension of each dataset is reduced to 20. Af-
ter dimension reduction, we apply the ICA algorithms to
each dataset, such that we are seeking spatially independent
components that correspond to spatial functional connectivity
maps shown in Fig. 5. After obtaining the estimated demixing
matrices from each of the algorithms and for each dataset, we
estimate the independent components and, together with their
associated demixing vectors, pair them with the true sources.
In the case where more than one estimated component is
paired with a single true source, we use Bertsekas algorithm
[22] to find the best assignment. To evaluate the performance
of the ICA algorithms, we use the average absolute value of
the correlation between the true and the estimated sources.

From Fig. 6, we observe that SparseICA-EBM provides
significantly improved performance compared with ICA-
EBM for high CNR values, due to the effective incorporation
of sparsity into the ICA model. In contrast to the first set of
experiments, both Infomax-NG and Infomax-BFGS provide

Component Map

 

 

 

 

Fig. 5. Simulated fMRI-like components. Note that each
color indicates a different component.

similar performance to SparseICA-EBM. Both implemen-
tations of Infomax use a fixed model for the underlying
distribution of the sources, resulting in high performance in
this case, since SimTB sources that we have used closely
match the assumed source model. However, their separation
performance has been shown to suffer when the density of
the data significantly deviates from the assumed underlying
model [12, 23].
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Fig. 6. Spatial correlation between the true and the estimated
sources as a function of the CNR level. Each point is the result
of 128 independent runs.

5. CONCLUSION

Both sparsity and independence have proven useful in a va-
riety of applications, motivating the development of an algo-
rithm that can effectively balance the contributions of these
two forms of diversity. In this paper, we propose a new ICA
algorithm, SparseICA-EBM, that inherits all the advantages
of ICA-EBM, namely its flexibility, though with enhanced
performance due to the exploitation of sparsity, making it an
attractive ICA algorithm for applications where prior infor-
mation about the sparsity of the sources is available. Our
work motivates several interesting directions for further re-
search, such as the development of automated techniques for
parameter selection when the ground truth is not available.
Additionally, adaptively updating λm and ε for each source
would significantly increase the separation performance when
sources have different levels of sparsity.

2535



References
[1] W. Lu and J. C. Rajapakse, “Approach and applications

of constrained ICA,” IEEE transactions on neural net-
works, vol. 16, no. 1, pp. 203–212, 2005.

[2] V. Calhoun, T. Adalı, M. Stevens, K. Kiehl, and
J. Pekar, “Semi-blind ICA of fMRI: a method for uti-
lizing hypothesis-derived time courses in a spatial ICA
analysis,” Neuroimage, vol. 25, no. 2, pp. 527–538,
2005.

[3] P. A. Rodriguez, M. Anderson, V. D. Calhoun, and
T. Adalı, “General nonunitary constrained ICA and its
application to complex-valued fMRI data,” IEEE Trans-
actions on Biomedical Engineering, vol. 62, no. 3, pp.
922–929, March 2015.

[4] Z. Wang, “Fixed-point algorithms for constrained ICA
and their applications in fMRI data analysis,” Magnetic
resonance imaging, vol. 29, no. 9, pp. 1288–1303, 2011.

[5] Q.-H. Lin, J. Liu, Y.-R. Zheng, H. Liang, and V. D.
Calhoun, “Semiblind spatial ICA of fMRI using spatial
constraints,” Human brain mapping, vol. 31, no. 7, pp.
1076–1088, 2010.

[6] N. Soldati, V. D. Calhoun, L. Bruzzone, and J. Jovicich,
“ICA analysis of fMRI with real-time constraints: an
evaluation of fast detection performance as function of
algorithms, parameters and a priori conditions,” Fron-
tiers in human neuroscience, vol. 7, p. 19, 2013.

[7] A. J. Bell and T. J. Sejnowski, “An information-
maximization approach to blind separation and blind
deconvolution,” Neural computation, vol. 7, no. 6, pp.
1129–1159, 1995.

[8] A. Hyvarinen, “Fast and robust fixed-point algorithms
for independent component analysis,” IEEE transac-
tions on Neural Networks, vol. 10, no. 3, pp. 626–634,
1999.

[9] S. Ma, X. L. Li, N. M. Correa, T. Adalı, and V. D.
Calhoun, “Independent subspace analysis with prior in-
formation for fMRI data,” in 2010 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing, March 2010, pp. 1922–1925.

[10] T. Adalı, M. Anderson, and G.-S. Fu, “Diversity in inde-
pendent component and vector analyses: Identifiability,
algorithms, and applications in medical imaging,” IEEE
Signal Processing Magazine, vol. 31, no. 3, pp. 18–33,
May 2014.

[11] P. Comon and C. Jutten, Handbook of Blind Source Sep-
aration: Independent Component Analysis and Applica-
tions, 1st ed. Academic Press, 2010.

[12] X.-L. Li and T. Adalı, “Independent component analy-
sis by entropy bound minimization,” IEEE Trans. Signal
Processing, vol. 58, no. 10, pp. 5151–5164, 2010.

[13] X.-L. Li and X.-D. Zhang, “Nonorthogonal joint diago-
nalization free of degenerate solution,” IEEE Trans. Sig-
nal Processing, vol. 55, no. 5, pp. 1803–1814, 2007.

[14] E. J. Candes and T. Tao, “Decoding by linear pro-
gramming,” IEEE transactions on information theory,
vol. 51, no. 12, pp. 4203–4215, 2005.

[15] M. Schmidt, G. Fung, and R. Rosales, “Fast optimiza-
tion methods for `1 regularization: A comparative study
and two new approaches,” in European Conference on
Machine Learning. Springer, 2007, pp. 286–297.

[16] R. Tibshirani, “Regression shrinkage and selection via
the LASSO,” Journal of the Royal Statistical Society.
Series B (Methodological), pp. 267–288, 1996.

[17] S.-I. Lee, H. Lee, P. Abbeel, and A. Y. Ng, “Efficient `1

1 regularized logistic regression,” in Proceedings of the
National Conference on Artificial Intelligence, vol. 21,
no. 1. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2006, p. 401.

[18] H. B. Nielsen, “Ucminf-an algorithm for unconstrained,
nonlinear optimization,” Informatics and Mathematical
Modelling (IMM), Technical University of Denmark,
Tech. Rep., 2000.

[19] S. Nadarajah, “A generalized normal distribution,” Jour-
nal of Applied Statistics, vol. 32, no. 7, pp. 685–694,
2005.

[20] N. Hurley and S. Rickard, “Comparing measures of
sparsity,” IEEE Transactions on Information Theory,
vol. 55, no. 10, pp. 4723–4741, 2009.

[21] V. D. Calhoun and T. Adalı, “Multisubject independent
component analysis of fMRI: A decade of intrinsic net-
works, default mode, and neurodiagnostic discovery,”
IEEE Reviews in Biomedical Engineering, vol. 5, pp.
60–73, 2012.

[22] D. P. Bertsekas, “The auction algorithm: A distributed
relaxation method for the assignment problem,” Annals
of operations research, vol. 14, no. 1, pp. 105–123,
1988.

[23] Z. Boukouvalas, R. Mowakeaa, G.-S. Fu, and T. Adalı,
“Independent Component Analysis by Entropy Maxi-
mization with Kernels,” ArXiv e-prints, Oct. 2016.

2536


