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ABSTRACT

Recently, sparse coding has been widely and successfully
used in image classification, noise reduction, texture synthe-
sis and audio processing. Although traditional sparse coding
method with fixed dictionaries like wavelet and curvelet
can produce promising results, unsupervised sparse coding
has shown its advantage by optimizing the dictionary adap-
tively. However, existing unsupervised sparse coding failed to
consider the high dimensional manifold information within
data. Recently, a graph regularized sparse coding method
has shown outstanding performance by incorporating graph
laplacian manifold information. In this paper, we proposed a
sparse coding method called locally linear embedded sparse
coding, to consider the local manifold structure as well as
learning the sparse representation. We also provided a novel
modified online dictionary learning method which iteratively
utilizes modified least angle regression and block coordinate
descent method to solve the problem. Instead of getting entire
coefficient matrix then update dictionary matrix, our method
updates coefficient vector and dictionary matrix in each inner
iteration. Extensive experimental results have demonstrated
the efficiency and accuracy of our method in image clustering.

Index Terms— Locally linear embedding, sparse coding,
manifold learning, online dictionary learning, least angle re-
gression, image clustering, SIFT

1. INTRODUCTION

Sparse coding enables successful representation of stimuli
with only a few active coefficients. It has shown state-of-art
results in ordinary signal processing tasks like image denois-
ing [1] and restoration [2], audio [3] and video processing
[4], as well as more complicated tasks like image classifica-
tion [5] and image clustering [6]. When applied to natural
images, sparse coding produces learned bases that can re-
semble the receptive fields of neurons in the visual cortex
[7], which is similar to the results of Independent Component
Analysis (ICA) [8] and Gabor filter [9]. Compared with other
unsupervised methods like PCA and ICA, sparse coding can
learn overcomplete basis sets and doesn’t require statistical-

independence of the dictionary prototype signals. In machine
learning and statistics, slightly different matrix factorization
problems such as non-negative matrix factorization, its vari-
ants [10] [11] and sparse principal component analysis [12]
have been successfully used to obtain interpretable basis ele-
ments.

When dealing with high dimensional feature space in image
clustering and classification, sparse coding with dimension-
ality reduction becomes a reasonable thought. Cai [13] pro-
posed a graph regularized nonnegative matrix factorization
(NMF) method, inspired by his work, Gao [14] and Zheng [6]
proposed graph regularized sparse coding (GraphSC), which
explicitly considers the local geometrical structure of the
data. In those epic work, graph regularized NMF and sparse
coding show big improvement on image clustering compared
with existing NMF and sparse coding. However, all of these
graph regularized work are based on graph laplacian method,
which is only one of the many manifold learning methods. In
this paper, we proposed a locally linear embedded sparse cod-
ing method (LLESC) together with a novel modified online
dictionary learning method (MODL) to solve the objective
function efficiently.

The rest of this paper is organized as follows: In Section II,
we give a brief description of sparse coding problem and pop-
ular methods to solve the sparse coding problem. Section III
introduces the LLESC algorithm, as well as the MODL solu-
tion. Experimental results on image clustering are presented
in Section IV.

2. A BRIEF REVIEW OF SPARSE CODING

Given a data matrix X = [x1, ...,xm] ∈ Rn×m, let D =
[d1, ...,dk] ∈ Rn×k, where each di represents a basis vector
in the dictionary, and A = [α1, ...,αm] ∈ Rk×m be the co-
efficient matrix, where each column is a sparse representation
for a data point. A good dictionary and coefficient pair should
minimize the empirical loss function, which can be repre-
sented as

∑m
i=1 ‖xi −Dαi‖p. The typical norms used for

measuring the loss function are the Lp norms where p = 1, 2
and ∞. Here we concentrate on least square loss problems
when p = 2.
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The objective function of sparse coding can be formulated
as:

min
D,A
‖X −DA‖2F + β

m∑
i=1

f(αi), (1)

s.t. ‖di‖2 6 c, i = 1, ..., k
where f is a function to measure the sparseness of αi and
‖· ‖F denotes the matrix Frobenius norm.

Following [15] [16], we adopt the idea of L1 norm instead
of L0, which can produce similar results with affordable com-
putational cost. The objective function then becomes:

min
D,A
‖X −DA‖2F + β

m∑
i=1

‖αi‖1, (2)

s.t. ‖di‖2 6 c, i = 1, ..., k
Although the objective function is not convex withD andA

together, it is convex with either one fixed. We iteratively op-
timize the objective function by minimizing over one variable
with the other one fixed. Thus, it becomes an L1-regularized
least squares problem with an L2-constrained least square
problem.

3. LOCALLY LINEAR EMBEDDED SPARSE
CODING (LLESC)

3.1. Algorithm Outline

Locally linear embedding (LLE) is an unsupervised learning
algorithm that computes low dimensional, neighborhood pre-
serving embedding of high dimensional data. LLE attempts
to discover nonlinear structure in high dimensional data by
exploiting the local symmetries of linear reconstruction [17].
Given a set of m dimensional data points x1, ..., xm, we can
characterize the local geometry of these patches by linear co-
efficients that reconstruct each data point from its neighbors.
Reconstruction errors are:

1
2

m∑
i=1

|xi −
∑

j Wijxj |2 = Tr(XLXT ) (3)

Where L = (I −W )
T
(I −W ), I is identity matrix, W

is weight matrix.
Nearest neighbor is a necessary step to compute the weight

matrix. Besides using Euclidean distance, we also utilizes
scale-invariant feature transform (SIFT) [18] for nearest
neighbor calculation, which shows better performance in
situations with scaled and rotated image objects.

LLE constructs a neighborhood preserving mapping: xi 7→
αi. By incorporating the LLE regularizer into the original
sparse coding, we can get the following objective function of
LLESC:

min
D,A
‖X −DA‖2F + λTr(ALAT ) + β

m∑
i=1

‖αi‖1 (4)

s.t. ‖di‖2 6 c, i = 1, ..., k
where λ > 0 is the regularization parameter.

3.2. Coefficients Learning and Dictionary Learning

In this section, we show how to solve problem (4) with mod-
ified online dictionary learning algorithm.

Fixing dictionaryD, the objective function becomes:

min
A
‖X −DA‖2F + λTr(ALAT ) + β

m∑
i=1

‖αi‖1 (5)

As problem (5) is convex, global minimum can be achieved[19].
With modified online dictionary learning, we update each

vector αi individually, while keeping all the other vectors
constant. In order to solve the problem by optimizing over
each αi, we rewrite problem (5) in vector form.

Reconstruction error ‖X −DA‖2F can be written as:
m∑
i=1

‖xi −Dαi‖2 (6)

As matrixL is symmetric in LLE, the regularizer Tr(ALAT )
can be rewritten as:
Tr(ALAT ) = Tr(

m∑
i,j=1

Lijαiα
T
j ) =

m∑
i,j=1

Lijα
T
i αj (7)

We combine reconstruction error with LLE regularizer, add
sparsity constrain to it, the objective function becomes:

min
αi

m∑
i=1

‖xi −Dαi‖2 + λ
m∑

i,j=1

Lijα
T
i αj + β

m∑
i=1

‖αi‖1 (8)

When updatingαi, the other vectors {αj}j 6=i are fixed[6]
[20]. Thus, we get the following optimization problem:

min
αi

‖xi −Dαi‖2 + λLiiα
T
i αj + αT

i hi+ β
k∑

j=1

|α(j)
i | (9)

Where hi = 2λ(
∑

j 6=i Lijαj) and α(j)
i is the j-th coefficient

of αi

In Algorithm 1 of modified online dictionary learning
(MODL), we keep dictionary D fixed, optimizing each in-
dividual coefficient αi with all other coefficients fixed for
each input data xi. The method used is modified least angle
regression which will be explained in algorithm 2. Dictio-
nary update is by block coordinate descent method, please
reference [20] for detail.

Algorithm 1: MODL

Require: x ∈ Rm from p(x) (x sequentially aligned in
p(x)), β ∈ R (regularization parameter), D0 ∈ Rm×k (ini-
tial dictionary), T (number of samples in data set p(x)).
1: A0 ∈ Rk×k ← 0, B0 ∈ Rm×k ← 0 (Reset the
“past”information)
2: for t = 1 to T do
3: Draw xt from p(x) (sequentially drawn)
4: Sparse coding: compute using modified LARS

(Algorithm 2)

αt , argmin
α∈Rk

1

2
‖xt −Dt−1α‖22 + λLttα

Tα+αTht

+ β‖α‖1
5: At←At−1 +αtα

T
t

6: Bt←Bt−1 + xtα
T
t

7: Compute Dt using block coordinate descent method
[20], withDt−1 as warm

restart, so that

Dt , argmin
D∈C

1

t

t∑
i=1

(
1

2
‖xi −Dαi‖22 + λ

m∑
i,j=1

Lijα
T
i αj
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+β
m∑
i=1

‖αi‖1)

= argmin
D∈C

1

t
(
1

2
Tr(DTDAt)− Tr(DTBt))

8:end for
9:ReturnDT ,A for complete dictionary and coefficients

learning

Notation: C , {D ∈ Rm×ks.t.∀j = 1, ..., k,dTj dj 6 1}.

3.3. Modified Least Angle Regression

Least Angle Regression (LARS) [21] is a regression method
that provides a general version of forward selection, which
is highly efficient in solving LASSO [22]. We follow the
steps presented in [23]. In step 7 of Algorithm 2, instead of
calculating the ordinary least square solution (OLS) (10), we
calculate the locally linear embedded least square solution
(LLELS) (11) to incorporate structure information.

α
(k+1)
OLS = (DT

ADA)
−1
DT
Ay (10)

α
(k+1)
LLELS= (DT

ADA + λLkkI)
−1

(DT
Ax− hk/2) (11)

Where I is identity matrix and hk = 2λ(
∑
k 6=j

Lkjαj).

Algorithm 2: Modified Least Angle Regression

1: Initialize the coefficient vector α(0) = 0 and the fitted
vector x̂(0) = 0.

2: Initialize the active set A = φ and the inactive set
I = 1, ..., p.

3: for k = 0 to p− 2 do
4: Update the residual ε = x− x̂(k)

5: Find the maximal correlation c = maxi∈I |dTi ε|
6: Move variable corresponding to c from I to A
7: Calculate the graph constrained least square solution:
α

(k+1)
LLELS = (DT

ADA + λLkkI)
−1

(DT
Ax− hk/2)

Where I is identity matrix and hk = 2λ(
∑
k 6=j

Lkjαj)

8: Calculate the current direction: d =DAα
(k+1)
LLELS - x̂(k)

9: Calculate the step length:

γ = min+i∈I {
dTi ε− c
dTi d− c

,
dTi ε+ c

dTi d+ c
}, 0 ≤ γ ≤ 1

10: Update regression coefficients:
α(k+1) = (1− γ)α(k)+γα(k+1)

LLELS

11: Update the fitted vector x̂(k+1) = x̂(k) + γd
12:end for
13:Letα(p) be the full graph constrained least square solution
α(p) = (DT

ADA + λL(p−1)(p−1)I)
−1

(DT
Ax− hp−1/2)

where I is identity matrix and hp−1 = 2λ(
∑

p−16=j

L(p−1)jαj)

14: Output: the series of coefficientsA = [α(0), ...,α(p)]

Note: di is column of DictionaryD, d is direction.

4. EXPERIMENTAL RESULTS

In this section, we present image clustering experiments
on CMU-PIE and COIL data set 1, data statistics are shown
in table 1. We compared clustering accuracy of our method
(LLESC) against several unsupervised methods. We also
compared the computation efficiency between LLESC and
GrapSC methods [14] [6]. All clustering tasks are based
on a Windows 10 machine with Intel Core i7-2820M 2.3GHz
CPU and 16GB RAM. Algorithms were implemented and ex-
ecuted in MATLAB environment. We used VLFeat toolbox
2for SIFT calculation.

We use both PCA and K-SVD for preprocessing (pick
the best results), after getting the coefficient matrix (A) by
GraphSC and LLESC, K-means method will be used to clus-
ter those coefficients. We use computation time from matlab
as efficiency evaluation metric, normalized mutual informa-
tion (NMI) [13] [6] as clustering accuracy evaluation metric.

Table 2, figure 1, table 3 and figure 2 shows LLESC clus-
tering results on CMU-PIE and COIL data set. Figure 3
shows an example of SIFT matching of two images with dif-
ferent orientations. Figure 4 and figure 5 show LLESC and
LLESCsift (LLESC with SIFT) clustering results with differ-
ent regularization parameter λ and number of clusters k on
CMU-PIE and COIL data set. We can easily find LLESCsift
performances slightly better than LLESC on COIL, as COIL
data set contains images with different orientations and SIFT
is better than Euclidean in finding similar images in those
data sets. Finally, figuer 6 shows our LLESC with MODL
algorithm is more efficient than GraphSC in clustering on
CMU-PIE and COIL data set.

Table 1: Statistics of the data set

Data set Size(N) Dimensionality (M) # of class (K)
CMU-PIE 1428 1024 68
COIL20 1440 1024 20

Table 2: Clusetering performance on CMU-PIE (K is number
of clusters)

Normalized Mutual Information (%)
K Kmeans PCA KSVD SC LLESC
4 33± 5.6 44± 6.2 100 100 100

12 52± 4.8 55± 5.1 91± 2.2 95± 1.2 97± 1.1

20 55± 3.3 59± 4.5 75± 2.6 91± 1.1 96± 1.3

28 59± 3.7 60± 3.4 76± 2.8 90± 1.2 96± 1.1

36 60± 3.9 63± 1.6 77± 3.1 88± 2.3 95± 1.2

44 60± 2.4 65± 1.1 74± 2.7 85± 1.5 95± 1.1

52 61± 2.2 62± 1.9 76± 2.2 83± 2.1 94± 1.3

60 65± 3.5 66± 2.1 78± 1.9 80± 1.4 94± 1.0

68 63 66 75 77 93

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
2http://www.vlfeat.org/
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Fig. 1: Normalized mutual information versus the number of
clusters on CMU-PIE data set

Table 3: Clusetering performance on COIL20 (K is number
of clusters)

Normalized Mutual Information (%)
K Kmeans PCA KSVD SC LLESC
2 67± 8.5 54± 9.1 66± 8.8 81± 5.2 83± 9.6

4 65± 8.3 63± 9.2 64± 6.9 84± 6.3 84± 9.9

6 66± 9.4 59± 8.1 70± 8.1 78± 4.3 83± 9.2

8 61± 8.6 61± 9.7 79± 6.4 82± 5.2 79± 8.9

10 59± 9.6 60± 7.9 72± 5.5 84± 2.1 80± 8.6

12 62± 7.9 69± 6.5 70± 4.6 82± 2.4 81± 8.4

14 66± 7.7 65± 6.7 69± 5.1 76± 2.9 83± 6.3

16 71± 6.5 61± 5.5 72± 2.3 81± 3.3 82± 6.7

18 70± 4.4 60± 4.9 71± 1.4 76± 1.6 78± 5.9

20 72.4 66.7 74.1 77.3 80.3
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Fig. 2: Normalized mutual information versus the number of
clusters on COIL20 data set

Fig. 3: SIFT matching example
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(a) NMI vs λ
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(b) NMI vs k

Fig. 4: Clustering performance with different values of regu-
larization parameter (λ) and the number of nearest neighbors
(k) on CMU-PIE face database.
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Fig. 5: Clustering performance with different values of regu-
larization parameter (λ) and the number of nearest neighbors
(k) on COIL20 face database.

(a) On CMU-PIE data set (b) On COIL20 data set

Fig. 6: Clustering time between LLESC and GraphSC on
CMU-PIE and COIL20 data set.

2530



5. REFERENCES

[1] M. Elad and M. Aharon, “Image denoising via sparse
and redundant representations over learned dictionar-
ies,” vol. 15, no. 12, pp. 3736–3745, 2006.

[2] Julien Mairal, Julien Mairal, Michael Elad, Michael
Elad, Guillermo Sapiro, and Guillermo Sapiro, “Sparse
representation for color image restoration,” in the IEEE
Trans. on Image Processing. 2007, pp. 53–69, ITIP.

[3] Roger Grosse, Rajat Raina, Helen Kwong, and An-
drew Y. Ng, “Grosse et al. 149 shift-invariant sparse
coding for audio classification,” .

[4] Bruno A. Olshausen, “Sparse coding of time-varying
natural images,” in IN PROC. OF THE INT. CONF.
ON INDEPENDENT COMPONENT ANALYSIS AND
BLIND SOURCE SEPARATION, 2000, pp. 603–608.

[5] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas
Huang, “Linear spatial pyramid matching using sparse
coding for image classification,” in in IEEE Conference
on Computer Vision and Pattern Recognition(CVPR,
2009.

[6] Miao Zheng, Jiajun Bu, Chun Chen, Can Wang, Lijun
Zhang, Guang Qiu, and Deng Cai, “Graph regularized
sparse coding for image representation,” IEEE Transac-
tions on Image Processing, pp. 1327–1336, 2011.

[7] D. J. Fieldt B. A. Olshausen, “Sparse coding with an
overcomplete basis set: a strategy employed by v1,” Vi-
sion Research, vol. 37, pp. 3311–3325, 1997.

[8] Anthony J. Bell and Terrence J. Sejnowski, “The ”inde-
pendent components” of natural scenes are edge filters,”
1997.

[9] S. Marelja, “Mathematical description of the responses
of simple cortical cells,” Journal of the Optical Society
of America, vol. 70, pp. 1297–1300, 1980.

[10] Daniel D. Lee and H. Sebastian Seung, “Algorithms for
non-negative matrix factorization,” in In NIPS. 2001,
pp. 556–562, MIT Press.

[11] Patrik O. Hoyer, “Non-negative matrix factorization
with sparseness constraints,” Jour. of, pp. 1457–1469,
2004.

[12] Hui Zou, Trevor Hastie, and Robert Tibshirani, “Sparse
principal component analysis,” Journal of Computa-
tional and Graphical Statistics, vol. 15, pp. 2006, 2004.

[13] Deng Cai, Xiaofei He, Jiawei Han, and Thomas S.
Huang, “Graph regularized non-negative matrix factor-
ization for data representation,” IEEE TRANSACTIONS
ON PATTERN ANALYSIS AND MACHINE INTELLI-
GENCE, vol. 33, no. 8, pp. 1548–1560, 2011.

[14] Shenghua Gao, Ivor Wai hung Tsang, Liang tien Chia,
and Peilin Zhao, “Local features are not lonely lapla-
cian sparse coding for image classification,” .

[15] Robert Tibshirani, “Regression shrinkage and selection
via the lasso,” Journal of the Royal Statistical Society,
Series B, vol. 58, pp. 267–288, 1994.

[16] Scott Shaobing Chen, David L. Donoho, and Michael A.
Saunders, “Atomic decomposition by basis pursuit,”
1995.

[17] Lawrence K. Saul and Sam T. Roweis, “An introduction
to locally linear embedding,” Tech. Rep., 2000.

[18] David G. Lowe, “Distinctive image features from scale-
invariant keypoints,” 2003.

[19] Stephen Boyd and Lieven Vandenberghe, Convex Opti-
mization, Cambridge University Press, New York, NY,
USA, 2004.

[20] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo
Sapiro, “Online learning for matrix factorization and
sparse coding,” 2010.

[21] Iain Johnstone Robert Tibshirani Bradley Efron,
Trevor Hastie, “Least angle regression,” Annals of
Statistics, vol. 32, pp. 407–451, june 2004.

[22] Saharon Rosset and Ji Zhu, “Piecewise linear regular-
ized solution paths,” Ann. Statist, p. 1030, 2007.

[23] Rasmus Larsen Bjarne Ersboll Karl Sjostrand, Line
H. Clemmensen, “Spasm: A matlab toolbox for sparse
statistical modeling,” Journal of Statistical Software,
2010.

2531


