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ABSTRACT
Human Activity Recognition (HAR) must currently face up to the
challenge of rethinking analytics from the perspective of real-time
operation, wherein biophysical sensing streams are efficiently inter-
twined at close vicinity to the point of sensing. As such, feature
selection techniques, traditionally employed for off-line data pro-
cessing, should be evaluated with respect to their ability to filter
out redundant information in real-time. In this work, we propose
an online architecture for implementing feature selection on mobile
devices, and we evaluate popular feature selection methods against
constantly alternating activity labels. We perform a qualitative anal-
ysis to determine the dominant sensing modality that dictates the
activities of a certain time duration. The results indicate that online
feature selection performance changes among consecutive data par-
titions, leading to the conclusion that the type of available activity
influences significantly the feature selection procedure.

Index Terms— Feature Selection, Human Activity Recogni-
tion, Ubiquitous Computing, Online Implementations

1. INTRODUCTION

The last two decades have witnessed pioneering efforts on estab-
lishing Human Activity Recognition (HAR) as a multi-disciplinary
research field that can shape the future of personalized healthcare
and well-being services [1, 2]. Signal processing [3, 4] and wear-
able computing [5, 6] have been empowering these efforts, providing
the necessary means for monitoring the physiological performance
of individuals and extracting contextual information from raw obser-
vations in an offline, centralized fashion. Nevertheless, latest trends
in HAR applications [7] are focusing on addressing the challenge of
moving towards online processing architectures, dictated by the need
to analyse and interpret complex activities while in data capture.

Representative online learning frameworks in the HAR arena ex-
pand the set of modalities beyond typical inertial sensing [8, 9],
or elaborate on implementing reliable classification techniques (e.g.,
Support Vector Machines) on mobile, computationally constrained,
devices [10, 11]. These approaches address adequately both data
sampling and online pre-filtering, as well as real-time aspects of
landmark classification algorithms. Even so, limited consideration
is given on how we can intelligently exploit the inherent correlations
of diverse raw sensing streams for achieving dynamic data compres-
sion at no information loss for the classification procedure.

Recent empirical studies [12] emphatically conclude that con-
sidering feature selection [13] into the HAR chain, can yield simi-
lar or improved performance than the one achieved when the entire
feature set is used. Feature selection is in principle a search prob-
lem, responsible for the automatic calculation of the data attributes

that are considered to have sufficient information for inferring the
labels of different classes. Feature selection algorithms (FSA) ei-
ther rank individual attributes based on their discriminating power
between different classes (filter methods), or iteratively evaluate the
complementarity of different attributes (wrapper methods) [14]. In
addition, the theoretical framework of graph feature selection has
been recently shaped [15, 16, 17], according to which features are
modelled as the vertices of a graph, while their inter-similarity is re-
flected on the weighted edges of the graph.

FSA trends in the HAR domain propose frameworks that in
their majority address off-line perspectives of the problem, wherein
the sensing dataset is a priori available for processing. Zhang and
Sawchuk [18] introduce the concept of physical features in archi-
tectures that consider a wired inertial sensor and present the perfor-
mance between different supervised FSA. The benchmark studies
recently introduced in [19] further extend such efforts, evaluating
the performance of supervised, unsupervised, and graph methods
on expanded datasets in terms of types of activity, as well as de-
ployment on the human body. Moving towards on-line schemes, the
authors in [20], combine the energy cost of individual features that
are calculated in real-time and explore the efficacy of graph models
to represent correlation and computing complexity of the features.
Notwithstanding, recent literature reports a substantial gap on how
FSA performs in dynamic environments, wherein dominant features
are calculated while biophysical sensing streams are in capture.

In this work, we address this gap by studying online aspects of
popular FSA [21, 22, 16]. We extend our recent work [19], where
we evaluated the offline performance of FSA for HAR, by propos-
ing a software framework for performing online feature selection
in parallel with data acquisition, and implement it on modern mo-
bile devices. Instead of performing calculations on the entire dataset
[19], limited windows of sensing streams are available at any time
for catering feature extraction and selection. Going well beyond the
current state of the art, we herein yield analytical results on the dy-
namic FSA performance with respect to the variation of human ac-
tivities, sampled at different parts of the human body. We introduce
the concept of dominant streams, defined as the sensing modalities
that convey dominant features, and we highlight how they impact the
performance of different FSA. Finally, we address real-time aspects,
elaborating on execution time and energy consumption.

2. THE ONLINE FEATURE SELECTION ARCHITECTURE

A common concept for most real-life HAR deployments [23, 24] is
that wireless sensing devices are mounted on different parts of the
human body and periodically transmit biophysical streams of data
to a mobile device, which is responsible for storing and processing.
Considering such architectures, one can think of sensor data arriv-
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ing in small chunks at extremely frequent time intervals, belonging
into the magnitude of milliseconds. As such, a substantial volume of
raw data streams can become available within seconds for enabling
real-time analytics on human movements. The herein proposed ar-
chitecture, presented in Figure 1 exploits this rationale for extending
the modular design of the FORTH-TRACE library [19], in order to
perform online feature selection on mobile devices.

Specifically, the Data Gathering module, responsible for the data

Fig. 1: The architecture of the online feature selection scheme.

preprocessing, is enriched with a database (FORTH-TRACE.db),
which enables the dynamic storage and retrieval of data streams as
they arrive from the wearable sensors to the mobile device. Depend-
ing on both the sampling rate and the memory and computational
limitations of the device, these streams are retrieved in temporal win-
dows of length equal to W and preprocessed for synchronization and
removal of outliers. The resulting data chunks are fed into the Seg-
mentation component for their further tessellation into sliding win-
dows of observation length equal to w. The segmented data are em-
ployed for the calculation of M statistical features [18] and the con-
catenation of all respective feature vectors into a feature data matrix
at the Feature Extraction module. The extracted features are stored
to FORTH-TRACE.db by means of an independent, non-blocking
background thread, and they are employed by the Feature Selection
component for calculating the reduced feature set, comprised of R
(R < M ) dominant attributes, which represent the human activities
that correspond to the initial data chunk.

The above procedure is periodically repeated, since the activi-
ties involved in such applications alternate at a frequent pace. The
reduced set of features can be further on utilized for the classifi-
cation process, as well as for inferring qualitative information on
the characteristics of the reduced feature set contents. Specifically,
we categorize the dominant features based on the sensing modality
they represent (e.g., acceleration, angular velocity), the type of at-
tribute (e.g., statistical), and the pairwise correlations they express,
both within the same modality (intra-modality), e.g., between data
captured from different axes, as well as across different modalities
(inter-modality), e.g., between accelerometer and gyroscope data.
As highlighted in Section 3, the resulting dominant streams provide
valuable insight into the current dominating sensor modality and its
relationship to the performed human activity.

3. EVALUATION STUDIES

In this work, we investigate the influence of both the occurring
activity labels and the resulting dominant streams on the FSA

performance. Towards this direction, the herein proposed archi-
tecture for online FSA has been implemented at a Samsung Galaxy
Tab4, featuring Android KitKat (4.4.2). Without loss of gener-
ality, we emulate sampling from wearable sensors by employing
a pseudo real-time procedure that periodically feeds our online
feature selection library with consecutive sensing streams. For
this purpose, we consider the FORTH-TRACE dataset [19], which
employs Shimmer wearable devices [25], deployed on five dif-
ferent body locations. The dataset contains 3-axial inertial data
(acceleration, angular velocity, variations of the magnetic field)
collected from 15 healthy individuals while they are performing a
series of 16 short activities within a 20 min time span. The set of
activities includes conventional ones (e.g., climbing stairs), pos-
tural transitions (e.g., sit → stand), and combined activities (e.g.,
walk and talk). In total, streams of 9 sensing channels, i.e. 3 per
modality, are fed into the Feature Extraction component for cal-
culating 135 statistical features for each temporal window. These
attributes can be further grouped into the following categories of
dominant streams: statistical→ {accelerometer, gyroscope, magne-
tometer}; pairwise intra-modality→ {accelerometer-accelerometer,
gyroscope-gyroscope, magnetometer-magnetometer}; and pairwise
inter-modality → {accelerometer-gyroscope, accelerometer - mag-
netometer, gyroscope-magnetometer}.

We evaluate the performance of feature selection methods
that yield the optimal results in the off-line studies [19], namely
the unsupervised Feature Selection based on Feature Similar-
ity (FSSA, wrapper method) [22], the supervised Relief-F (filter
method) [21, 13], and the unsupervised Graph Clustering with Node
Centrality (GCNC, filter method) [16]. The length w of the segmen-
tation window is set to 2s, while the key experimental parameter
is the length W of the initial temporal window and the number
P of subsequent partitions it generates for performing FSA on a
different subset of raw data and respective performed activities.
Specifically, we consider W ∈ {2, 3, 4, 5} (min), thereby generat-
ing P ∈ {9, 6, 5, 4} partitions, respectively. Table 1, indicates the
number of activity labels that occur in each W − P combination,
while Table 2 highlights the distribution of the different activities in
successive data partitions when W = 2 min.

P
W 1 2 3 4 5 6 7 8 9
2 3 5 5 3 3 5 5 5 3
3 4 6 5 5 7 5 - - -
4 6 6 6 9 3 - - - -
5 6 7 8 5 - - - - -

Table 1: No. of activity labels in each W − P combination.

Partition Index
Activity 1 2 3 4 5 6 7 8 9
stand 41.88 18.64 18.64 3.39 16.1 16.95 3.39 16.1 64.47
sit 52.14 41.53 - - - - - - -
sit & talk - 26.27 66.95 - - - - - -
walk - - 5.08 94.92 - - 49.15 - -
walk & talk - - - - 81.36 22.88 - 28.81 31.58
climb - - - - - 55.93 44.07 - -
climb & talk - - - - - - - 50.85 -
stand→ sit 5.98 - - - - - - - -
sit→ stand - 6.78 - - - - - - -
stand→ sit & talk - 6.78 - - - - - - -
sit & talk→ stand - - 6.78 - - - - - -
stand→ walk - - 2.54 - 2.54 - - - -
walk→ stand - - - 1.69 - 1.69 1.69 - 3.95
stand→ climb - - - - - 2.54 - 2.54 -
climb→ walk - - - - - - 1.69 - -
climb & talk→
walk & talk

- - - - - - - 1.69 -

Table 2: Percentage (%) of occurrence of activities detected in each
data partition for W = 2 min.

The FSA performance is evaluated in a post-processing compo-
nent, in which the normalized value Hr ∈ [0,1] of the Representa-
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Fig. 2: Mean values of CA and Hr for FSSA, Relief-F and GCNC from all sensor locations of the FORTH-TRACE dataset.

tion Entropy [22] is utilized to measure the quality of compression.
Specifically, when H → 0, the data patterns are highly relevant to
each other, and when H → 1 the information is equally distributed
along the features. In addition, we employ in an off-line fashion the
Gaussian-Kernel SVM classifier [26] for calculating the estimated
activity labels. The respective classification accuracy (CA) metric
quantifies the classification ability of the reduced feature set; when
CA → 1, optimal predictability is achieved. The run-time perfor-
mance of the online feature selection library is quantified in terms of
execution time per component and the Android energy requirements.

3.1. Dynamic Performance of the FSA

Figure 2 depicts the mean values of CA and Hr of GCNC, FSSA
and Relief-F with respect to the partition index for all cases of W
and sensor locations. We also present the CA results for the case
when no feature selection algorithm is applied (ground truth). We
observe that short temporal windows W are accompanied by in-
creased variations on the FSA performance across different data
partitions. For example, when W = 2 min, the CA metric at-
tains the values 0.61, 0.79, 0.63 in the 2nd data partition, and then
increases to 0.76, 0.96 and 0.91 during the 4th data partition for
FSSA, Relief-F, and GCNC, respectively. The same remark stands
even for the ground truth case where CA transitions from 0.96 to
0.99 in the 2nd to 4th partition. This variation is aligned to the
activities involved in the specific partitions, as presented in Table 2;
during the second partition, the activities are mainly split into “sit”
and “sit and talk”, which are considered less discriminative from
each other compared to those primarily involved in the 4th data
partition (“walk”). Similarly, the value of Hr differentiates across
different partitions especially regarding the Relief-F and GCNC
algorithms, showing a peak in the 4th (0.82, 0.88 for Relief-F and
GCNC, respectively), the 7th (0.85 for Relief-F), and the 8th (0.85
for GCNC) data partitions.

The performance variation across different partitions is less
prominent, as the size of W increases. For instance, when W = 4
min, the CA metric attains the values 0.64, 0.87, 0.7 and 0.97 in the
first partition and equals to 0.61, 0.91, 0.58 and 0.95 as it reaches
the 5th partition for FSSA, Relief-F, GCNC, and the ground truth,
respectively. Likewise, Hr becomes {0.99, 0.85, 0.76} → {0.92,
0.79, 0.76} between the first and the last partition when FSSA,
Relief-F, and GCNC are respectively employed. When data chunks
corresponding to W=5 min are consecutively fed into the online
FSA library, the maximum absolute difference of the value of CA
(Hr) between different partitions equals to 0.06 (0.07). These re-

sults highlight how the volume of the data streams can improve FSA
performance both in terms of compression as well as in terms of the
resulting predictability of the labels of the classes, regardless of the
fact that the number of respective activities (Table 1) increases.

The differences in the performance of the three feature selection
methods is aligned to their inherent characteristics. Specifically,
Relief-F considers the class label in the calculation of the dominant
features, and as such it exhibits better and more consistent perfor-
mance in CA terms than the one observed when the unsupervised
FSSA and GCNC are employed. Furthermore, the knowledge of
the class labels leads Relief-F in convergence to the optimal CA
results, which are indicated by the ground truth. Nevertheless,
Relief-F does not consider the complementarity between different
data attributes, and thereby has a limited consideration on yielding
highly compressed reduced feature sets. As such, its performance in
terms of Hr is inferior when compared to the remaining approaches.
Considering FSSA and GCNC, the different variations of activities
and the lack of the respective labels in different data partitions have
a greater impact on their performance both in terms of CA, as well
as Hr . The respective deviations are more consistent for smaller
window sizes. Hence the remaining of this analysis elaborates on
the case of having W = 2 min.

Performance among different data partitions and sensor lo-
cations. Table 3 presents the performance of the GCNC, Relief-F,
and FSSA algorithms across different partitions for W=2 min for
two locations of the dataset, namely the left wrist and the right thigh.
The performance of all FSA varies with respect to the sensor loca-
tion; activities inferred from the lower body (right thigh) offer con-
sistently a more optimal performance in CA terms than the one re-
sulting when data collected from the upper body are employed, for
all feature selection techniques considered. This is related to the set
of the activities incorporated (e.g.,“walk” versus “stand”), which are
more discriminative when data sampled from the lower body parts
are involved. Among the herein examined FSA, the FSSA algorithm
is highly influenced by the difference in the signals recorded from the
different body parts; during the 4th partition, the CA decreases from
0.84 to 0.58 as we transit from the right thigh to the left wrist data
streams. Nonetheless, FSSA, due to its clustering criterion, yields
optimal Hr values for all partitions of both locations. GCNC shows
steep variations in terms of Hr , among partitions 4-8 of the right
thigh location; however this does not apply in the left wrist location.
This observation is aligned to the limitation of the GCNC to system-
atically avoid the contribution of each feature to the overall entropy
of the feature data set, hence causing fluctuations in the performance
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Left Wrist
Parition Index 1 2 3 4 5 6 7 8 9
GCNC 0.76, 0.87 0.66, 0.78 0.77, 0.82 0.81, 0.87 0.84, 0.75 0.78, 0.78 0.70, 0.96 0.68, 0.99 0.58, 0.49
Relief-F 0.81, 0.49 0.78, 0.66 0.90, 0.77 0.97, 0.79 0.97, 0.75 0.87, 0.79 0.92, 0.86 0.88, 0.81 0.92, 0.75
FSSA 0.62, 0.99 0.70, 0.99 0.46, 0.95 0.58, 0.98 0.71, 0.99 0.55, 0.96 0.39, 0.98 0.62, 0.99 0.52, 1

Right Thigh
Partition Index 1 2 3 4 5 6 7 8 9
GCNC 0.67, 0.80 0.69, 0.92 0.74, 0.97 0.96, 0.80 0.80, 0.46 0.78, 0.65 0.58, 0.47 0.67, 0.93 0.70, 0.85
Relief-F 0.89, 0.54 0.72, 0.80 0.90, 0.83 0.96, 0.80 0.95, 0.77 0.89, 0.81 0.91, 0.84 0.95, 0.80 0.94, 0.83
FSSA 0.93, 0.99 0.62, 0.91 0.67, 0.87 0.84, 0.95 0.74, 0.82 0.63, 0.91 0.49, 0.99 0.54, 0.97 0.68, 0.82

Table 3: Values of [CA, Hr] of GCNC, Relief-F and FSSA algorithms across different partitions for W = 2 min.

GCNC, Relief-F Left Wrist
Partition Index 1 2 3 4 5 6 7 8 9
statistical acc 25, 20 12.5, 32 33.3, 20 44.4, 33.3 50, 37.5 12.5, 29.1 25, 29.1 11.1, 45.8 42.8, 20.8
statistical gyro 62.5, 40 0, 28 0, 20 0, 45.8 12.5, 4.1 25, 25 12.5, 29.1 44.4, 0 0, 14.2
statistical mag 12.5, 12 50, 16 33.3, 8 22.2, 8.3 37.5, 25 37.5, 20.8 25, 25 11.1, 16.6 42.8, 16.6
p/w intra acc 0, 0 0, 0 0, 4 0, 4.1 0, 4.1 0, 0 0, 4.1 0, 0 0, 12.5
p/w intra gyro 0,0 0, 4 11.1, 0 0, 4.1 0, 4.1 0, 8.3 12.5, 4.1 0, 0 14.2, 0
p/w intra mag 0, 0 0, 0 0, 0 0, 0 0, 0 0 , 0 0, 0 0, 4.1 0, 0
p/w inter acc-gyro 0, 12 12.5, 12 11.1, 20 0. 0 0, 8.3 12.5, 8.3 12.5, 4.1 11.1, 4.1 0, 20.8
p/w inter acc-mag 0, 8 0, 8 0, 20 22.2, 4.1 0, 12.5 0, 8.3 0, 4.1, 0, 0 0, 0
p/w inter gyro-mag 0, 8 25, 0 11.1, 8 11.1, 0 0, 4.1 12.5,0 12.5, 0 22.2, 0 0, 4.1

Right Thigh
1 2 3 4 5 6 7 8 9

14.2, 16.6 37.5, 12.5 0, 16.6 11.1, 29.1 12.5, 37.5 22.2, 20.8 22.2, 29.1 22.2, 20.8 22.2, 20.8
28.5, 50 12.5, 20.8 22.2, 16.6 55.5, 33.3 37.5, 16.6 22.2, 16.6 22.2, 25 22.2, 20.8 22.2, 16.6
28.5, 8.3 37.5, 4.1 44.4, 25 22.2, 20.8 37.5, 25 44.4, 16.6 44.4, 16.6 33.3, 37.5 44.4, 12.5

0, 8.3 0, 0 0, 4.1 11.1, 0 0, 4.1 0, 12.5 0, 4.1 0, 0 0, 8.3
0, 0 0, 0 0, 8.3 0, 0 0, 0 0, 0 0, 4.1 11.1, 0 0, 12.5

14.2, 4.1 0, 4.1 0, 0 0, 0 0, 0 11.1, 0 11.1, 0 0, 0 0, 0
0, 4.1 0, 33.3 0, 12.5 0, 12.5 0, 8.3 0, 20.8 0, 12.5 0, 4.1 0, 16.6
0, 8.3 0, 8.3 0, 8.3 0, 4.1 12.5, 4.1 0, 12.5 0, 0 11.11, 4.1 0, 4.1
14.2, 0 12.5, 16.6 33.3, 8.3 0, 0 0, 4.1 0, 0 0, 8.3 0, 12.5 11.1, 8.3

Table 4: Percentage (%) of occurence of Dominant Input Streams for (GCNC, Relief-F) across different data partitions for W = 2 min.

of the graph feature selection technique.
Impact of activity labels to the Classification Accuracy. The

combination of results presented in Tables 2 and 3, verifies the claim
that the distribution of activity labels within a single partition clearly
affects the outcome of the CA. For instance, the value of CA at the
4th and 5th partitions, which correspond to a single primary activ-
ity (“walk”: 94.92%, “walk and talk”:81.36% respectively) attains
optimal results (GCNC ≥ 0.8, Relief-F ≥ 0.95). By contrast, the
2nd and 3rd partitions, wherein the data is shared between more ac-
tivities, yield inferior performance regarding CA (GCNC ≤ 0.69,
Relief-F ≤ 0.72, FSSA ≤ 0.7). Furthermore, it occurs that the pro-
portion of transitional activities in a single partition has an effect on
the FSA performance as well. Hence, the value of CA of Relief-F
in the 8th partition, which contains∼ 4.2% of transitional activities,
is approximately 20% larger than its CA value in the 2nd partition,
which contains∼ 13.5% of transitional activities, for both locations.
However, this observation does not apply for the unsupervised FSA.

Dominant Streams. Table 4 demonstrates the percentage of
dominant streams selected by GCNC and Relief-F for the left wrist
and the right thigh locations. The majority of dominant streams
selected by GCNC belongs to the statistical domain, while the top
rankings of Relief-F are distributed among the statistical and the
pairwise correlation features. Moreover, the pairwise inter-modality
streams dominate against the pairwise intra-modality ones for all
cases herein presented. Notably, the dominant streams in partitions,
which yield optimal CA results vary among the different locations;
the majority of the input streams selected by GCNC in partitions 4-
5 are from the statistical domain. By contrast, regarding partition
4 of both locations, Relief-F chooses a combination of statistical
and pairwise correlation domain features. Finally, partitions yielding
similar performance (e.g., partition 4, CA = 0.96) are described by
different dominant input streams when either Relief-F or GCNC are
employed. This remark stands for consecutive partitions, wherein
each feature selection method shows similar performance (e.g. left
wrist, partitions 4 and 5, Relief-F CA = 0.97), as well as for those
that yield poor performance (e.g. partitions 2, 8).

3.2. Run-time aspects

Table 5 indicates the execution time of the online library modules
in the Android environment. Large W possess large amounts of
available to process data, thus, the separate modules are more time-
consuming. Feature extraction and feature selection have a con-

siderable impact on the run-time performance of the whole frame-
work, showing measurements reaching the minute scale as the size
of W increases. With regard to feature selection, Relief-F reports
the fastest execution (< 12s), however its supervised learning na-
ture does not facilitate it for a real-time realization of the framework.
Concerning the unsupervised FSA, GCNC is considered suitable for
a real-time feature selection architecture, showing a maximum exe-
cution of ∼ 28s, contrary to FSSA which requires more than 40s.
Finally, we measure the energy requirements of the online frame-
work using the PowerTutor utility [27]. Our library requires 20.3 J,
outperforming both the Adaptive Accelerometer Activity Recogni-
tion (A3R) algorithm [24] and the Shimmer3 Gesture Recognition
application [25], which require 100 J and 29.2 J respectively.

Execution time (s) per W 2 3 4 5
Acquisition 1.2 1.36 1.73 1.7
Segmentation 0.73 0.95 1.14 1.16
Feature Extraction 46.62 84.28 116.71 146.23
FS: FSSA 49.57 69.81 85.74 105.49
FS: Relief-F 4.3 7.36 9.75 11.71
FS: GCNC 21.52 21.74 23.06 28.25

Table 5: Execution time(s) of the library components per W .

4. CONCLUSIONS

In this work, we examined the online behaviour of feature selection
in the HAR domain. We proposed a software architecture for en-
abling the transition from offline to online feature selection schemes.
We implemented the herein proposed architecture on conventional
mobile devices, and performed extensive studies on how the dy-
namic catering of sensing streams, corresponding to different ac-
tivities and wearable sensor locations, affects the performance of
popular FSA. We observed a diversity in the feature selection per-
formance along different partitions of data, and different dominating
sensor modalities. We conclude that the feature selection perfor-
mance is affected by the intrinsic properties and learning nature of
each distinct FSA and by the type of activity labels that characterize
the given input data. In terms of real-time behaviour, the extraction
and selection of features are the most time-consuming operations,
especially when the a priori-knowledge of the activity labels is not
considered for the calculation of the dominant streams. A future ex-
tension of this work will address the aforementioned remarks into the
design of an unsupervised, yet dynamic and activity-adaptive FSA to
fill the gap in online HAR realizations.
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