
DIFFUSION GRADIENT BOOSTING FOR NETWORKED LEARNING

Bicheng Ying and Ali H. Sayed

University of California, Los Angeles

ABSTRACT
Using duality arguments from optimization theory, this work develops
an effective distributed gradient boosting strategy for inference and
classification by networked clusters of learners. By sharing local dual
variables with their immediate neighbors through a diffusion learning
protocol, the clusters are able to match the performance of centralized
boosting solutions even when the individual clusters only have access
to partial information about the feature space.

Index Terms— Gradient boosting, distributed learning, diffusion
strategy, AdaBoost.

1. INTRODUCTION AND MOTIVATION

In statistics and machine learning, ensemble learning is a formidable
technique that is able to aggregate the recommendations of weak
classifiers into a more powerful classification structure with enhanced
predictive abilities [1–4]. One prominent example is the AdaBoost
algorithm [3, 5, 6], which has achieved great prominence due to its
efficient implementation structure, strong performance, and its ability
to limit over-fitting [1]. It also satisfies a useful optimality property
in that it can be derived from the minimization of exponential risk
functions [7]. This connection between exponential risks and Ad-
aBoost has motivated useful generalizations of boosting solutions
using other choices for the risk function. Two of the main generaliza-
tions introduced in [8] and [9] are the Gradient Boosting Machine and
the AnyBoost solution. These works helped solidify the connection
between boosting techniques and gradient-descent methods from an
optimization theory perspective.

In this article, we exploit this connection more broadly and con-
sider distributed implementations. Specifically, we show how to
develop cooperative boosting strategies by exploiting strong duality
arguments from optimization theory [10, 11] and powerful diffusion
strategies from distributed learning [12, 13]. We examine the im-
portant case in which the weak classifiers are not co-located but are
dispersed, either geographically over space or by design through the
intentional partitioning of the classifier set. We assume that the classi-
fier set is partitioned into smaller groups, where the elements in each
group may only have access to lower dimensional subspaces of the
feature space. The groups are also networked by an outer topology
– see Fig. 1 further ahead. The objective is to endow the dispersed
groups of classifiers, through localized cooperation, with a distributed
learning mechanism that ensures that the quality of their predictions is
as close to what would result from a centralized solution with access
to the entire feature space.

One earlier approach to distributed boosting is studied in [14–16].
It is based on learning from subsets of the training data and then com-

This work was supported in part by NSF grants ECCS-1407712
and CCF-1524250, and DARPA project N66001–14–2–4029. Email:
{ybc,sayed}@ucla.edu

bining the weak classifiers through an aggregation procedure. This
formulation is different from the approach pursued in this work, which
is fully decentralized and does not involve fusing information from
across all classifiers. A second example is the Ivote procedure [17]
and its distributed version DIvote [18,19]. These procedures, however,
do not rely on boosting and their theoretical limits of performance
have not been analyzed as closely as AdaBoost. While these various
methods work well in some circumstances, they can still suffer from
over-fitting or get trapped at local minima. In comparison, this work
devises truly distributed boosting solutions with performance guaran-
tees by relying on strong duality arguments [11, 20] and the theory of
diffusion adaptation [12, 13], which allow the algorithms to disperse
data and computation in a parallel and distributed manner.

2. GRADIENT BOOSTING ALGORITHM
In order to prepare for the derivation of the distributed strategy, we
briefly review the well-known gradient boosting technique [8,9,21] in
the context of supervised machine learning problems. Thus, consider
a collection of N data pairs:

D =
{
{h1, γ(1)}, {h2, γ(2)}, · · · , {hN , γ(N)}

}
(1)

where hn ∈RM are feature vectors and γ(n) represent the class
variable. In this article, we assume that there are two classes γ(n)∈
{±1}. A generic classifier, denoted by c(h), is a transformation that
maps a feature vector h into a class value, γ(h). Assume we have a
collection of L weak classifiers:

C = {c1(h), c2(h), · · · , cL(h)}, (L can be larger than N) (2)

We would like to select combination coefficients {α(`)} to construct a
prediction for the class variable γ(h) by combining the above learners
into a more powerful classifier:

γ̂(h)
∆
=

L∑
`=1

α(`)c`(h) (3)

The coefficients {α(`)} are determined by minimizing a surrogate
risk of the following form

Jemp(γ̂)
∆
=

1

N

N∑
n=1

Q
(
γ(n), γ̂(n)

)
(4)

where the symbol Q(·) denotes a generic loss function, assumed
convex and first-order differentiable. Some popular choices for
Q(·) include the exponential loss, quadratic loss, hinge loss, and
logistic loss [1,2,22]. Gradient boosting provides a solution technique
by applying a greedy strategy to the minimization of (4) [1, 8, 21],
where one coefficient α(`) and one classifier c`(h) are selected at
a time. Specifically, assume that by the end of iteration t − 1, we
have already identified classifiers {co1(h), . . . , cot−1(h)} and weights
{αo(1), . . . , αo(t−1)}. Gradient boosting selects the next classifier,
ct(h), and its associated weight, α(t), and enlarges the aggregate

2512978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

prediction from iteration t− 1 as follows:

γ̂(t)(h) =

t−1∑
s=1

αo(s)cos(h)+α(t)ct(h) = γ̂(t−1)(h)+α(t)ct(h)

In order to determine the optimal choices {cot (h), αo(t)}, the algo-
rithm evaluates the negative gradient of the empirical risk (4) and
selects the classifier and its weight optimally: the index `o is selected
through (7) and the coefficient αo(t) through (8).

Gradient boosting algorithm [8]

Initialization: choose γ̂(0)(n), n = 1, 2, . . . , N
repeat for t = 1, 2, . . . , T :

gt(n) = −
∂Q
(
γ(n), γ̂(n)

)
∂γ̂(n)

∣∣∣∣∣
γ̂(n)=γ̂(t−1)(n)

(5)

{`o, βo} = argmin
{`,β}

N∑
n=1

(gt(n)− βc`(hn))2 (6)

cot (h) = c`o(h) (7)

αo(t) = argmin
α

N∑
n=1

Q
(
γ(n), γ̂(t−1)(hn) + αcot (hn)

)
(8)

γ̂(t)(h) = γ̂(t−1)(h) + αo(t)cot (h) (9)

end

3. DIFFUSION GRADIENT BOOSTING
We now derive an effective decentralized strategy for boosting as-
suming distributed classifier groups and partial information at the
groups. We first describe a formulation that involves the centralized
fusion of predictions from a collection of dispersed learning groups.
We subsequently apply duality arguments to show that this can be
transformed into a distributed implementation that relies solely on
local interactions among the groups.

3.1. Networked Groups and Partitioning Model
We consider a scenario in which the L classifiers are divided into K
groupings. We index the groups by the letter k, with k = 1, 2, . . . ,K.
We denote the classifiers that are available in group k by:

Ck = {ck,1(h), ck,2(h), . . . , ck,Lk (h)} (10)

Note that we are attaching a subscript k to the classifiers to indicate
that these are the ones used by group k. We allow classifiers to
be repeated across groups. We also assume that each group k may
have access to only a subset of the feature space for its classification
decisions. This situation is common. For example, weak classifiers
are often chosen as shallow decision trees, or simply stumps [1, 23].
When a number of these weak classifiers is present at a particular
group k, then this group will be relying on a subset of the feature
entries. To reflect this fact, for any of the training vectors hn ∈ RM ,
we shall adopt the notation hk,n ∈ RMk to refer to the subset of
the feature vector hn that is used by group k. Again, we allow for
feature entries to be repeated across groups. Accordingly, when we
write, for example, ck,1(hk,n), this notation is meant to refer to the
classifier c1(·) that is present in group k and which operates on the
sub-features of hn that are included in hk,n.

We further assume that there is a graph structure that ties the
groups together, shown in Fig. 1, so that if groups k and k′ are con-
nected by some edge, then this means that these groups can exchange
information over this edge. A non-negative scalar ak′,k is assigned

to the edge connecting k′ to k. These scalars are convex combination
coefficients and satisfy:

ak,k′ = ak′,k ≥ 0,
∑
k′∈Nk

ak′,k = 1, (11)

where Nk denotes the set of neighbors of group k; these are the
groups that are directly connected to k by edges. If we collect the
scalars {ak′,k} into a K × K matrix A = [ak′,k], then the above
property implies that A is a symmetric matrix, and each column and
each row of A adds up to one. We say that A is a doubly-stochastic
matrix. There are many possible choices for such doubly-stochastic
matrices. One popular choice is the Metropolis rule [12].

c1,`(h1,·)

cK,`(hK,·)

ak0,k

cluster 1

cluster K

cluster k

cluster k0

ak,k0

Fig. 1. Partitioning of the feature space and network topology.

3.2. Centralized Processing at the Groups
In principle, each group k can run its own gradient boosting procedure
and, after T iterations, come up with its own prediction, one that is
based on the classifiers in Ck. More broadly, a centralized solution
would seek to determine a global prediction function, γ̂(h), that
combines all group classifiers in the following manner:

γ̂(T)(h)
∆
=

K∑
k=1

T∑
t=1

αk(t)ck,t(hk,·) (12)

in terms of some coefficients {αk(t)} that need to be determined.
Observe that we are now attaching a subscript k to coefficients arising
from group k. The main difference in the derivation that follows
in relation to the gradient boosting derivation from the previous
section is that we now need to select a total of K classifiers, one
from each group, for each iteration t, along with their corresponding
weights. That is, every stage t now involves determining K pairs
{cok,t(hk,·), αok(t)} for k = 1, 2, . . . ,K.

Assume that by the end of iteration t−1, each group k has already
identified the optimal classifiers {cok,1(h), cok,2(h), . . . , cok,t−1(h)}
and their combination weights {αok(1), αok(2), . . . , αok(t − 1)}.
Next, we would like to select the next K classifiers, denoted gener-
ically by {ck,t(h)}, and their associated weights {αk(t)}, for
k = 1, 2, . . . ,K, in order to enlarge the aggregate prediction from
stage t− 1 by adding to it a term of the following form:

γ̂(t)(h) = γ̂(t−1)(h) +

K∑
k=1

αk(t)ck,t(hk,·) (13)

Observe that the aggregate update now involves the sum of K weak
classifiers: one from each group k. In order to determine the opti-
mal choices {cok,t(h), αok(t)} for k = 1, 2, . . . ,K, we evaluate the
negative gradient of the empirical risk:

gk,t(n)
∆
= − ∂Q(γ(n), γ̂(n))

∂γ̂(n)

∣∣∣∣
γ̂(n)=γ̂(t−1)(n)

(14)

and set cok,t(h) = ck,`o
k
(h), where the optimal index `ok, for group k,

is obtained by solving:

{`ok, βok} = argmin
{1≤`≤Lk,βk}

N∑
n=1

(
gk,t(n)− βk ck,`(hk,n)

)2

(15)

2513

Once the {cok,t(h)} are selected, we then choose the weights {αk(t)}
for the K groups in order to result in the steepest decline in the value
of the empirical risk, namely,

{αok(t)} = argmin
{αk}

N∑
n=1

Q
(
γ(n), γ̂(t−1)(hn)+

K∑
k=1

αkc
o
k,t(hk,n)

)
(16)

With the {cok,t(h), αok(t)} so determined, we can rewrite (13) in terms
of these optimal choices:

γ̂(t)(h) = γ̂(t−1)(h) +

K∑
k=1

αok(t)c
o
k,t(hk,·) (17)

The resulting algorithm is non-distributed; nevertheless, it solves the
problem of selecting K optimal classifiers and their weights at each
stage in order to reduce the empirical risk value sequentially. Since
this implementation requires access to global information from across
all groups, we shall refer to it as a centralized solution.

3.3. Equivalence via Duality Argument
Our purpose now is to device a fully-decentralized scheme whereby
groups rely solely on their local information and on exchanges with
their immediate group neighbors in order to construct the aggregate
classifier without the need to access global information.

For generality, we consider a regularized version of (16), say,

{αok(t)} = argmin
{αk}

ρ

K∑
k=1

q(αk) +

N∑
n=1

Q

(
γ(n), γ̂(t−1)(hn) +

K∑
k=1

αkc
o
k,t(hk,n)

)
(18)

where ρ > 0 is a regularization parameter and q(·) is a convex
regularization function. The key observation is that the objective
function in (18) has the form of a “cost-of-sum” since the argument
of Q(·) involves a sum in terms of the unknowns, {αk}. The duality
argument will show that this “cost-of-sum” form can be transformed
into an equivalent “sum-of-cost” form, which is particularly amenable
to distributed implementations [24].

We start by introducing, for every n = 1, 2, . . . , N , a dummy
scalar variable z(n) and replace (18) by:

min
{z,α}

ρ

K∑
k=1

q(αk) +

N∑
n=1

Q
(
γ(n), γ̂(t−1)(hn) + z(n)

)
subject to z(n) =

K∑
k=1

αkc
o
k,t(hk,n), for n = 1, 2, . . . , N

(19)

It is easy to see that problem (19) is a standard convex optimization
problem and that, under the linear equality constraints, strong duality
holds [11]. The corresponding dual function is given by:

D(λ) ∆
=

N∑
n=1

inf
z(n)

{
Q
(
γ(n), γ̂(t−1)(hn)+z(n)

)
+λ(n)z(n)

}
+ρ

K∑
k=1

inf
αk

{
q(αk)−

N∑
n=1

λ(n)cok,t(hk,n)

ρ
αk

}
(20)

where the primal variables {αok(t, λ), zo(n, λ)} and the dual variable
λ are related via:

{zo(n, λ), αok(t, λ)} = argmin
{z,α}

L(z, α, λ) (21)

It will be shown later that the primal variables can be recovered in a
distributed manner. We can now call upon the concept of conjugate
functions. For any function r(x) of a scalar variable x, the conjugate

function is denoted by r?(ν) [11], where ν is a scalar argument,
and defined as r?(ν) = supx (νx − r(x)). For many common
regularization forms, closed form expressions exist for q?(ν) — see
[24, 25]. The first minimization in (20) can also be expressed in
closed form in important cases, such as when the loss function Q(·)
is chosen as the exponential loss, the square loss, or the logit loss. For
now, we denote the minimum value of the first term generically by:

Qo(n, λ)
∆
= − inf

z(n)

{
Q
(
γ(n), γ̂(t−1)(hn) + z(n)

)
+ λ(n)z(n)

}
(22)

so that the expression (20) can be written as:

D(λ) = −
K∑
k=1

Jk(λ), (23)

Jk(λ)
∆
= ρq?

(
N∑
n=1

λ(n)cok,t(hk,n)

ρ

)
+

1

K

N∑
n=1

Qo(n, λ) (24)

Therefore, the problem of determining the optimal dual variable, λo,
can be equivalently stated as

min
λ

K∑
k=1

Jk(λ) =⇒ λo (25)

The “sum-of-costs” formulation (25) is convenient because it admits
efficient distributed solutions of the consensus or diffusion type [12,
13], meaning that each group k is now able to estimate λo on its own
by interacting solely with its neighbors. We shall denote these local
estimates by λok, with a subscript k to indicate the group index.

3.4. Diffusion Learning
In the diffusion implementation, at every stage t and starting from
some initial value, each group k repeats the following computations
a couple of times until its estimate for the λ, denoted by λk,i at time
i, converges close enough to a limiting value, denoted by λok; this
limiting value is a local estimate for the dual variable λo.

Diffusion strategy [13] (run by every group k)
repeat for i = 1, 2, . . . , I:
φk,i = λk,i−1 − µ∇λJk(λk,i−1)
λk,i =

∑
k′∈Nk

ak′kφk′,i
end
set λok = λk,I

In the above adapt-then-combine (ATC) diffusion strategy [12,13,26],
for every i, agent k first moves along the negative direction of its
cost gradient to generate the intermediate estimate φk,i, followed
by a consultation step where it combines the intermediate estimates
{φk′,i} from its neighbors to obtain λk,i. We shall represent the
diffusion strategy more compactly by writing

λok = diffusion {Jk(λ),Nk, I} (26)

where Nk denotes the neighborhood of group k, and I denotes the
number of iterations to be used; this parameter is set by the designer.
All groups apply the diffusion strategy simultaneously. Consequently,
every group k will end up with a local version, λok, for the global
dual variable λo. In this way, each group k can now compute a local
version for zo(n) and its optimal coefficient αok(t) by solving:

zok(n) = argmin
z

{
Q
(
γ(n), γ̂

(t−1)
k (hn) + z

)
+ λok(n)z

}
(27)

αok(t) = argmin
αk

{
q(αk) −

(
N∑
n=1

λok(n)c
o
k,t(hk,n)

ρ

)
αk

}
(28)

2514

We now explain how the prediction variables can be estimated for
arbitrary features, h. Indeed, note that after completing T stages of
the diffusion strategy to learn the dual variable, each agent k will
have available its optimal coefficients αok(t) and classifier selections
cok,t(·). During testing, when a new feature vector h is received, each
agent k is able to use this local information to evaluate:

b
(T)
k (h)

∆
=
∑T
t=1 αok(t)c

o
k,t(hk,·) (29)

Then, from the general form (12) we know that the overall prediction
variable is the aggregate sum of these individual decision variables.
When A is doubly-stochastic, this sum can be evaluated in a dis-
tributed manner by each agent k running the traditional consensus
iteration [13, 27] to combine repeatedly local values.

Local averaging (run by every group k)
Initialization : start from s

(0)
k (h) = b

(T)
k (h)

repeat for j = 1, 2, . . . , J :
s

(j)
k (h) =

∑
k′∈Nk

ak′k s
(j−1)
k (h)

end
set γ̂(T)

k (h) = K · s(J)
k (h)

We represent the above averaging procedure compactly by writing:

γ̂
(T)
k (h) = K · average

{
b
(T)
k (h),Nk, J

}
(30)

In summary, the resulting distributed algorithm is the following.

Diffusion gradient boosting algorithm

Initialization: choose γ̂(0)
k (n), for n = 1 . . . N , k = 1 . . .K

repeat for t = 1, 2, . . . , T :

for every agent (in parallel) k = 1, 2, . . . ,K:

gk,t(n) = −
∂Q
(
γ, γ̂

)
∂γ̂(n)

∣∣∣∣∣
γ̂=γ̂

(t−1)
k

(n)

(31)

{`ok, βok} = argmin
{1≤`≤Lk,βk}

N∑
n=1

(
gk,t(n)− βk ck,`(hk,n)

)2

(32)

cok,t(h) = ck,`o
k
(h) (33)

Jk(λ) = expression (23) (34)

λok = diffusion {Jk(λ),Nk, I} (35)

αok(t) = argmin
αk

{
q(αk)−

(
N∑
n=1

λok(n)c
o
k,t(hk,n)

ρ

)
αk

}
(36)

b
(t)
k (h) = b

(t−1)
k (h) + αok(t)c

o
k,t(h) (37)

end
end
γ̂

(t)
k (h) = K · average

{
b
(t)
k (h),Nk, J

}
(38)

4. SIMULATION ON SPECIAL LOSS FUNCTIONS

In this section, we consider the exponential loss function, Q(γ, γ̂) =
e−γγ̂ , which is associated with AdaBoost learning. In this case, by
exploiting the fact that γ(n), ck,`(h) ∈ {±1}, it can be verified that

−
∂Q
(
γ(n), γ̂(n)

)
∂γ̂(n)

∣∣∣∣∣
γ̂(n)=γ̂

(t−1)
k

(n)

= γ(n)τk,t(n), (39)

τk,t(n)
∆
= exp{−γ(n)γ̂(t−1)

k (n)} (40)

`ok = argmin
1≤`≤Lk

N∑
n=1

τk,t(n) I [ck,`(hk,n) 6= γ(n)] (41)

where I[x] denotes the indicator function; it is equal to one when its
argument is true and zero otherwise. Result (41) indicates that `ok is
selected as the optimal classifier that results in the smallest sum of
weights τk,t(n) over the misclassified data. Next, we evaluate the
function Qo(n, λ) defined by (22) and find:

Qok,t(n, λ) = γ(n)λ(n)

[
ln

(
γ(n)λ(n)

τk,t(n)

)
− 1

]
(42)

Assume we employ elastic-net regularization:

q(x) = δ|x|+ 1

2
|x|2 ⇐⇒ q?(ν) =

1

2

∣∣Tδ(ν)∣∣2 (43)

where Tδ(ν) represents the soft-thresholding operator Tδ(ν) =
sgn(ν) ·max(|ν| − δ, 0). It then follows from (23) and (28) that

αok(t) = Tδ
(1
ρ

N∑
n=1

λok,t(n)c
o
k,t(hk,·)

)
(44)

γ̂
(t)
k (n) = γ̂

(t−1)
k (n)− γ(n) ln

(
γ(n)λok,t(n)

τk,t(n)

)
(45)

We can use this update to derive an alternative expression for
the weight τk,t(n) in terms of the local dual variable λok,t(n) by
τk,t+1(n) = γ(n)λok,t(n) It is useful to assign λok,t−1(n) as a
starting point for λok,t(n) in the diffusion update (26).

We now compare the performance of the diffusion Adaboost
implementation with elastic-net regularization against the standard
(centralized) Adaboost algorithm [8]. The set of weak classifiers is
chosen as

c`(hn) = sign(hn(p) > thresp) (46)

For the diffusion AdaBoost setting, we assigned 10 groups, which are
connected through a random doubly stochastic matrix. Each group
is in charge of one-tenth of the feature entries and the corresponding
weak classifiers. The test data is obtained from the LIBSVM website1.
We use the Reuters Corpus Volume I (RCV1) dataset. The agent
setting is the same and the parameter setting is ρ = 0.01, δ = 0.2,
and µ = 1× 10−6.

0 50 100 150 200 250 300 350 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Stage t

A
cc

ur
ac

y

Diffusion AdaBooost applied to RCV1 dataset

Diffusion AdaBoost (distributed)
Standard AdaBoost (centralized) [8]
Each agent (non−cooperative mode)

Fig. 2. Evolution of the performance curves.

One observation stands out from these results. The dotted lines
in the figure confirm that if the individual groups were to rely solely
on their classifiers to solve the inference task, then their performance
will be poor. However, once they start cooperating locally and sharing
local information, the network of dispersed groups is able to match
the performance of the centralized Adaboost solution.

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets

2515

5. REFERENCES

[1] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of
Statistical Learning, Springer, 2009.

[2] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006.

[3] Y. Freund and R. E. Schapire, “A decision-theoretic generaliza-
tion of on-line learning and an application to boosting,” Journal
of Computer and System Sciences, vol. 55, no. 1, pp. 119–139,
1997.

[4] T. Hastie and R. Tibshirani, Generalized Additive Models, CRC
Press, 1990.

[5] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” in Proc. ICML, Bari, Italy, 1996, vol. 96, pp. 148–
156.

[6] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proc. CVPR, HI, USA, 2001,
vol. 1, pp. I–511.

[7] L. Breiman, “Arcing classifier,” The Annals of Statistics, vol.
26, no. 3, pp. 801–849, 1998.

[8] J. H. Friedman, “Greedy function approximation: a gradient
boosting machine,” The Annals of Statistics, pp. 1189–1232,
2001.

[9] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting
algorithms as gradient descent in function space,” in Proc.
NIPS, 1999.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation, Prentice-Hall, 1989.

[11] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge University Press, 2004.

[12] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE,
vol. 102, no. 4, pp. 460–497, 2014.

[13] A. H. Sayed, “Adaptation, learning, and optimization over
networks,” Foundations and Trends in Machine Learning, vol.
7, no. 4-5, pp. 311–801, 2014.

[14] A. Lazarevic and Z. Obradovic, “Boosting algorithms for
parallel and distributed learning,” Distributed and Parallel
Databases, vol. 11, no. 2, pp. 203–229, 2002.

[15] A. Lazarevic and Z. Obradovic, “The distributed boosting
algorithm,” in Proc. ACM SIGKDD, San Francisco, CA, USA,
2001, pp. 311–316.

[16] W. Fan, S. J. Stolfo, and J. Zhang, “The application of adaboost
for distributed, scalable and on-line learning,” in Proc. ACM
SIGKDD, San Diego, CA, USA, 1999, pp. 362–366.

[17] L. Breiman, “Pasting small votes for classification in large
databases and on-line,” Machine Learning, vol. 36, no. 1-2, pp.
85–103, 1999.

[18] N. V. Chawla, L. O. Hall, K. W. Bowyer, T.E. Moore Jr., and
W. P. Kegelmeyer, “Distributed pasting of small votes,” in
Multiple Classifier Systems, F. Roli and J. Kittler, Eds., pp.
52–61. Springer, June 2002.

[19] N. V. V Chawla, L. O. O Hall, K. W. Bowyer, and W. P.
Kegelmeyer, “Learning ensembles from bites: A scalable and
accurate approach,” The Journal of Machine Learning Research,
vol. 5, pp. 421–451, 2004.

[20] D. P. Bertsekas, Nonlinear Programming, Athena scientific
Belmont, 1999.

[21] J. H. Friedman, “Stochastic gradient boosting,” Computational
Statistics and Data Analysis, vol. 38, no. 4, pp. 367–378, 2002.

[22] J. Friedman and R. Hastie, T.and Tibshirani, “Additive logistic
regression: a statistical view of boosting (with discussion and a
rejoinder by the authors),” The Annals of Statistics, vol. 28, no.
2, pp. 337–407, 2000.

[23] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classifica-
tion and Regression Trees, CRC press, 1984.

[24] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary learning
over distributed models,” IEEE Trans. Signal Process., vol. 63,
no. 4, pp. 1001–1016, 2015.

[25] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear
Optimization: Theory and Examples, Springer, 2010.

[26] J. Chen and A. H. Sayed, “On the learning behavior of adaptive
networks—Part I: Transient analysis,” IEEE Trans. Information
Theory, vol. 61, no. 6, pp. 3487–3517, June 2015.

[27] M. H. DeGroot, “Reaching a consensus,” Journal of the Ameri-
can Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.

2516

