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ABSTRACT

Owing to its simplicity and flexibility, the decision tree re-
mains an important analysis tool in many real-world learning
tasks. A lot of decision tree algorithms have been proposed,
such as ID3, C4.5 and CART, which represent three most
prevalent criteria of attribute splitting, i.e., Shannon entropy,
Gain Ratio and Gini index respectively. These splitting crite-
ria seem to be independent and to work in isolation. However,
in this paper, we find that these three attribute splitting criteria
can be unified in a Tsallis entropy framework. More impor-
tantly, theoretically, we reveal the relations between Tsallis
entropy and the above three prevalent attribute splitting cri-
teria. In addition, we generalize the splitting criterion of the
decision tree, and provide a new simple but efficient approach,
Unified Tsallis Criterion Decision Tree algorithm (UTCDT),
to enhance the performance of the decision tree. Experimen-
tal evidences demonstrate that UTCDT achieves statistically
significant improvement over the classical decision tree algo-
rithms, even yields comparable performance to state-of-the-
art classification algorithm.

Index Terms— Decision tree, Unified framework, Split-
ting criteria, Tsallis entropy

1. INTRODUCTION

The decision tree, as one of the first machine learning ap-
proaches, has been widely used but still being actively re-
searched in many real-world learning fields, e.g., image in-
terpolation [1], speech synthesis [2], just to name a few. The
decision tree is not only simple to understand and interpret,
but also offers relatively good results and computational ef-
ficiency. The general idea of the decision tree is to predict
unknown input instances by learning simple decision rules
inferred from several known training instances. A decision
tree is mostly often induced in the following top-down man-
ner [3]. A given dataset is partitioned into several subsets
by a splitting criterion test on attributes. The highest scoring
partition which reduces the average uncertainty mostly is se-
lected to grow the tree, by making the node be the parent of
the newly created child nodes. This procedure is applied re-
cursively until some stopping conditions, e.g., maximum tree
depth or minimum leaf size, are reached.

Generally speaking, splitting criterion is a fundamental is-
sue in the induction of the decision tree. A series of papers
have analyzed the importance of the splitting criterion [4, 5].
They demonstrated that different splitting criteria have sub-
stantial influence on the generalization error of the induced
decision tree. Thus, a large number of decision tree induc-
tion algorithms with different splitting criteria have been pro-
posed. For example, the Iterative Dichotomiser 3 (ID3) al-
gorithm [6] is based on Shannon entropy; the C4.5 algorithm
[7] is based on Gain Ratio which is considered as the normal-
ized Shannon entropy; while the Classification And Regres-
sion Tree (CART) algorithm [8] is based on Gini index. These
algorithms seem to be independent, and have been coexisting
for a long time. As we all know, it is difficult to judge which
algorithm is usually better than others on all datasets, which
reflects their lack of adaptability to different datasets.

In this paper, we propose a unified Tsallis entropy frame-
work, which not only unifies the above three prevalent split-
ting criteria, i.e., Shannon entropy, Gain Ratio and Gini index,
but also can adapt to various datasets through a tunable pa-
rameter q. To the best of our knowledge, this is the first time to
propose a unified framework combining splitting criteria to-
gether. Theoretically, we analyze the corresponding relations
between Tsallis entropy with different q and other splitting
criteria. Shannon entropy and Gini index are just two specific
cases of Tsallis entropy with q = 1 and 2, while Gain Ratio
can be regarded as the normalized Tsallis entropy with q = 1.
Based on the unified framework, we propose a Unified Tsal-
lis Criterion Decision Tree algorithm, called UTCDT, which
provides a new simple but efficient approach to improve the
performance of the decision tree. Empirically, UTCDT sig-
nificantly outperforms the classical decision tree algorithms,
both on classification accuracy and tree size. Compared to
state-of-the-art Support Vector Machine (SVM) with Radial
Basis Function (RBF) kernel [9], UTCDT also yields compa-
rable performance with a lower algorithm complexity.

2. BACKGROUND

Shannon entropy is a measure of uncertainty in a distribution
[10]. However, with respect to the two typical distributions
observed in the macroscopic world, i.e., exponential distri-
bution family and power-law heavy-tailed distribution family

2507978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



[11], we cannot characterize the latter one through maximiz-
ing Shannon entropy subject to the normal mean and vari-
ance. The reason is that Shannon entropy implicitly assumes
a certain trade-off between contributions from the tails and the
main mass of the distribution [12]. It should be worthwhile to
control this trade-off explicitly to characterize these two dis-
tribution family. Entropy measures that depend on powers
of probability, e.g.,

∑n
i=1 p(xi)

q , can provide such control.
Thus, some parameterized entropies have been proposed. A
well-known generalization of this concept is Tsallis entropy
[13], which extends its applications to so-called non-extensive
systems [14] using an adjustable parameter q.

Tsallis entropy is defined by:

Sq(X) =
1

1− q
(

n∑
i=1

p(xi)
q − 1), q ∈ R, (1)

where X is a random variable taking values {x1, ..., xn} and
p(xi) is the probability of xi.

For q < 0, Tsallis entropy is convex (or convex down-
ward). For q = 0, Tsallis entropy is non-convex and non-
concave. While for q > 0, Tsallis entropy is concave (or con-
vex upward), satisfying similar properties to Shannon entropy
[15], e.g., Sq is nonnegative, and obtains maximum when
p(xi) = 1/n, i = 1, 2, ..., n.

As a generalization of Shannon entropy, Tsallis entropy
has been tested in the decision tree in the prior work [12].
However, Maszczyk and Duch [12] only tested the perfor-
mance of Tsallis entropy in C4.5 with some given q. The
relations between Tsallis entropy and other splitting criteria
were not explored, and the unified framework was also not
presented. These are exactly what we are doing in our work.

3. THE UNIFIED TSALLIS ENTROPY
FRAMEWORK

In this section, the three prevalent attribute splitting criteria,
i.e., Shannon entropy, Gain Ratio and Gini index, are unified
in the Tsallis entropy framework. We also reveal the relations
among them theoretically.

Theorem 1. Tsallis entropy Sq(X) converges to Shannon en-
tropy H(X) for q → 1.

Proof.

lim
q→1

Sq(X) = lim
q→1

1

1− q
(

n∑
i=1

p(xi)
q − 1)

(a)
= lim

q→1

(
∑n

i=1 p(xi)
q − 1)′

(1− q)′

= −
n∑

i=1

p(xi) ln p(xi) = H(X), (2)

where the equation (a) is due to the L′Hopital’s rule [16].

Theorem 2. Gini index is exactly the specific case of Tsallis
entropy with q = 2.

Proof.

{Sq(X)}q=2 =
1

1− q
(

n∑
i=1

p(xi)
q − 1)︸ ︷︷ ︸

q=2

= 1−
n∑

i=1

p(xi)
2

=

n∑
i=1

(p(xi)− p(xi)2) =
n∑

i=1

p(xi)(1− p(xi))

= Gini index. (3)

Theorem 3. Gain Ratio (GR) adds a normalization to stan-
dard Shannon entropy based Information Gain, and if Shan-
non entropy is replaced by Tsallis entropy, Gain Ratio is gen-
eralized to Tsallis Gain Ratio (Tsallis GR). Tsallis Gain Ratio
converges to Gain Ratio as q → 1.

Proof.

lim
q→1

Tsallis GR = lim
q→1

Sq(D)− |D′|
|D| Sq(D

′)− |D′′|
|D| Sq(D

′′)

Sq

(
|D′|
|D| ,

|D′′|
|D|

)

=

Information Gain︷ ︸︸ ︷
H(D)− |D

′|
|D|

H(D′)− |D
′′|
|D|

H(D′′)

H
(

|D′|
|D| ,

|D′′|
|D|

)
= Gain Ratio (GR), (4)

where | · | denotes the number of instances, and D′, D′′ are
two child subsets if dataset D is split in binary.

With different q, Tsallis entropy degenerates to Shannon
entropy, Gini index and Gain Ratio. In other words, we can
promote the performance of the decision tree in the unified
Tsallis entropy framework via tuning parameter q, which is a
new perspective for enhancement.

4. UNIFIED TSALLIS CRITERION DECISION TREE
ALGORITHM

As state above, through tuning parameter q, Tsallis entropy
can form a variety of attribute splitting criteria. Therefore, we
propose the Unified Tsallis Criterion algorithm for Decision
Tree induction (UTCDT), which can be adapted to various
datasets by choosing an appropriate q.

4.1. Tree Construction

Given a dataset Dn = {(xi, yi)}ni=1, xi ∈ Rd with attributes
Aj (j ∈ {1, 2, . . . , d}), and class label yi ∈ {1, 2, . . . ,K}.
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For each tree node, we search for every possible pair of at-
tribute and cutting point to choose the optimal attribute and
cutting point to grow the tree in a binary split manner, like
CART [8]. For an attribute Aj , we obtain:

I(Aj(Cj)) = T (D)− |D
′|
|D|

T (D′)− |D
′′|
|D|

T (D′′). (5)

Here Aj(Cj) denotes the candidate pair of attribute as well
as cutting point, D is the data belonging to one node to be
partitioned, and D′, D′′ are the two child nodes that would
be created if D is partitioned at Aj(Cj). The function T (D)
is the impurity criterion, i.e., Tsallis entropy, which computes
over the labels of the data which fall in the node. The pair
of attribute Aj and cutting point Cj is chosen to construct the
tree which maximizes I(Aj(Cj)).

The above procedure is applied recursively until some
stopping conditions are reached. The stopping conditions
consist of three principles: (i) The classification is achieved
in a subset. (ii) No attributes are left for selection. (iii) The
cardinality of a subset is lower than the predefined threshold.

4.2. Prediction

Once the tree has been trained by the data as a classifier gn, it
can be used to predict for the new unlabeled instance x.

The decision tree makes prediction in a majority vote
manner. The probability of each class k ∈ {1, 2, . . . ,K} is

η(k)(x) =
1

|An(x)|
∑

(xi,yi)∈An(x)

I(yi = k), (6)

whereAn(x) denotes the leaf containing x, and I(e) is the in-
dicator function that takes 1 if e is true and 0 for other cases.
Then the tree prediction is the class that maximizes this prob-
ability:

gn(x) = argmax
k
{η(k)(x)}. (7)

Algorithm 1 UTCDT predicted value at an unlabeled in-
stance x

1: Input: Data Dn = {(xi, yi)}ni=1, Attributes Aj (j ∈
{1, 2, . . . , d}), Class label yi ∈ {1, 2, . . . ,K}

2: Output: UTCDT predicted value at x
3: while not satisfying stopping condition do
4: for each pair attribute Aj and cutting point Cj do
5: Compute I(Aj(Cj)) according to Eq. (5)
6: end for
7: Abest(Cbest) = argmax I(Aj(Cj))
8: //Abest, Cbest is the best pair of attribute and cutting

point
9: Grow the tree using Abest, Cbest

10: end while
11: Compute the predicted value following Eqs. (6) and (7).
12: Return Predicted value at x.

4.3. Summary of UTCDT

Here, we summarize our proposed Unified Tsallis Criterion
Decision Tree algorithm (UTCDT) in a pseudo-code format
in Algorithm 1. Compared to the classical decision tree in-
duction algorithms, the difference lies in the Tsallis entropy
splitting criterion, which can degenerate to Shannon entropy,
Gini index and Gain Ratio through different q. Note that, sim-
ilar to CART, UTCDT is also applicable to both numerical
and categorical attributes. In the following Experiments sec-
tion, we will see that UTCDT can construct a decision tree
with higher classification accuracy and smaller tree size.

5. EXPERIMENTS

In this section, we empirically assess the performance of
UTCDT. Firstly, we present the influence of parameter q in
the unified Tsallis entropy framework. Secondly, we compare
UTCDT with the classical decision tree algorithms and state-
of-the-art classification algorithm SVM. The 11 benchmark
datasets are from UCI [17], which consists of various number
of instances, numeric/categorical attributes and binary/multi
classes. As for the measure metric, we choose Accuracy
(ACC) and the number of nodes (Nodes) to measure the
classification effectiveness and the tree size respectively.

5.1. The Influence of Parameter q

To exhibit the influence of parameter q roundly, we traverse
q in a step of 0.1 in the range [0.1, 10.0]. For each selected
q, we choose the Tsallis entropy criterion and perform a 10
times 10-fold cross-validation to evaluate the performance.
Besides, the minimum leaf size is set to 5 to avoid overfitting.

Due to the limited space, we only demonstrate the result
on Glass dataset. Actually, other datasets demonstrate similar
trends. Figure 1 gives an intuitive exhibition of the influence
of different values of parameter q in Tsallis entropy for Glass
dataset. Figure 1 (a) illustrates that the accuracy is sensitive
to the change of q, and the highest accuracy is obtained at
q = 2.6; Figure 1 (b) shows that the tree size is also sensi-
tive to q, and the smallest tree size is achieved at q = 3.9.
More importantly, our proposed UTCDT can obtain accept-
able high accuracy and small tree size at the same time (e.g.,
q = 1.7). In summary, experimental results show that the pa-
rameter q indeed has an effect on the classification accuracy
and the tree size. Moreover, we can achieve different goals
through selecting different q, e.g., highest accuracy or small-
est tree size or trade-off, which also reflects the adaptability
and flexibility of UTCDT.

5.2. Classification Performance Analysis

To evaluate the performance of our proposed UTCDT com-
prehensively, we not only compare it to the classical decision
tree algorithms, i.e., ID3, C4.5 and CART, but also include
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Table 1. Comparisons (ACC%, Nodes) of different algorithms on various datasets. At the significance level of 0.05, UTCDT
significantly outperforms ID3, CART and C4.5 under the Friedman test [18]. Under the Wilcoxon signed rank test [18] with
0.05 significance level, Tsallis entropy significantly outperforms Shannon entropy as well as Gini index, and Tsallis Gain Ratio
significantly outperforms Gain Ratio.

Dataset
ID3

(Shannon entropy)
CART

(Gini index)
C4.5

(Gain Ratio)
UTCDT

(Tsallis entropy)
UTCDT

(Tsallis Gain Ratio)
SVM
(RBF)

ACC Nodes ACC Nodes ACC Nodes ACC Nodes q ACC Nodes ACC

Yeast 52.8 199 51.8 196.6 52.1 326.2 56.9 195.8 1.4 51.2 197.1 59.7
Glass 51.2 52.4 52.6 53.8 44.2 52 60.6 52.6 2.6 53.1 51.5 66.0
Vehicle 71.7 103 70.2 100 72.3 147.2 73.8 111.0 0.6 73.4 135.7 83.8
Wine 92.9 12.0 90.0 12.0 92.4 9.4 95.9 9.6 3.1 92.9 9.2 94.9
Haberman 70.3 32.2 70.3 33.0 72.8 33.0 74.2 33.2 7.1 74.8 32.0 77.9
Car 98.2 106.4 98.1 106.8 98.5 106.5 98.3 106.2 0.8 98.4 106.6 93.9
Scale 75.9 97.6 76.1 97.2 74.5 77.0 78.2 93.1 3.1 78.5 77.0 89.8
Hayes 81.5 28.8 80.0 25.3 79.2 19.6 82.3 19.5 8.6 81.5 19.2 81.2
Monks 51.9 89.0 52.1 88.6 52.9 88.0 57.3 89.6 8.9 54.9 88.0 56.4
Abalone 25.4 89.2 25.0 85.8 20.3 84.3 26.8 86.2 0.8 25.7 85.1 22.5
Cmc 49.1 267.0 47.4 264.0 45.7 242.8 52.0 264.2 1.2 47.8 242.1 54.2

0 2 4 6 8 10
parameter q

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

A
cc

ur
ac

y

(a) Classification Accuracy

0 2 4 6 8 10
parameter q

52

53

54

55

56

57

58

59

60

61

N
um

be
r

of
no

de
s

(b) Tree Size

Fig. 1. Influence of parameter q in ACC and Nodes (Glass)

state-of-the-art classification algorithm [19] SVM with RBF
kernel.

We do a grid search to determine q ∈ [0.1, 10.0] in
UTCDT, maybe the optimal q for Tsallis entropy and Tsal-
lis Gain Ratio are different, but for the fair comparison we
choose the same q, e.g., optimal q for Tsallis entropy. Other
settings are the same to Section 5.1. Besides, the parameters
in SVM are optimized following its original paper [9].

Table 1 reports the results of different algorithms on var-
ious datasets, where SVM serves as a reference algorithm.
Among decision tree algorithms with different splitting crite-
ria, we highlight the highest accuracy and smallest tree size on
each dataset in boldface. As expected, UTCDT significantly
outperforms ID3, CART and C4.5 due to the fact that Tsallis
entropy framework is a unification of Shannon entropy, Gini
index and Gain Ratio. To be specific, compared to Shannon
entropy and Gini index, Tsallis entropy achieves better per-
formance in accuracy and tree size. Tsallis Gain Ratio also
obtains better results compared to Gain Ratio. With respect
to the two kinds of splitting criteria in UTCDT, we can see
that Tsallis entropy prefers high accuracy while Tsallis Gain
Ratio prefers small tree size. The reason lies on the normal-

ized factor in Tsallis Gain Ratio which has influence on the
tree structure to a certain extent. Besides, the optimal q for
each dataset is usually not equal to 1 or 2, and it is associated
with the properties of the dataset, which implies that tuning q
enables UTCDT to own adaptability and flexibility.

In addition, note the last column of Table 1, the results
where SVM is better than UTCDT are marked with underlin-
ing. We can see that UTCDT only achieves lower accuracy on
6 out of 11 datasets, compared to SVM. On these 6 datasets,
the gap is not large, even within 3% on half of datasets (i.e.,
Yeast, Haberman and Cmc). It is worth mentioning that the
complexity of SVM is very high O(dn3), while the decision
tree is O(dn log n). From this view, UTCDT uses the lower
complexity but achieves comparable performance to SVM.

In summary, experimental results show that UTCDT in-
deed provides a new perspective to enhance the performance
of the decision tree, and possesses the adaptability to datasets
and the low algorithm complexity.

6. CONCLUSIONS

In this paper, we unify the three prevalent splitting criteria
into a parametric framework through Tsallis entropy, and
theoretically reveal the relations between Tsallis entropy and
other splitting criteria. Based on the unified framework, we
propose a Unified Tsallis Criterion Decision Tree algorithm
(UTCDT) to enhance the performance of the decision tree.
Experimental results indicate that, with an appropriate q,
UTCDT achieves statistically significant improvement over
the classical decision tree algorithms both on classification ac-
curacy and tree size, even comparable performance to SVM.
Owning simplicity and adaptability, UTCDT can be easily
used to promote the performance of many real-world learning
tasks, e.g., image interpolation [1] and speech synthesis [2].
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