MIXTURE SOURCE IDENTIFICATION IN NON-STATIONARY DATA STREAMS WITH
APPLICATIONS IN COMPRESSION

Afshin Abdi, Faramarz Fekri

Georgia Institute of Technology

ABSTRACT

We consider a non-stationary data stream in which the data
statistics may change abruptly from one sample to another,
i.e. each sample might be generated from a different (un-
known) source in a mixture of K sources. The problem of
identifying the models and parameters of K sources, as well
as the source switching model is investigated. We proposed
an algorithm based on Bayesian Information Criterion and
Expectation Maximization to determine the models and es-
timate the mixture parameters. The estimated data generation
model can be used in memory-assisted universal compression
to decrease the coding rate further. Simulation results con-
firmed that using the proposed algorithm for source identifi-
cation and universal compression can significantly decrease
the compression redundancy.

Index Terms— Source Identification, Non-Stationary
Data Modeling, Memory-Assisted Universal Compression

1. INTRODUCTION

Modeling data generation and source identification is a fun-
damental problem encountered in various applications from
pattern recognition to data compression. Most identification
problems are developed based on the assumption that the data
is stationary. However, in many applications, this is not the
case. For example, in single source scenarios, the properties
of the source may vary over time, or there might be numerous
(hidden) sources that at each time, the data are generated from
one of them. In this paper, we assume that the changes in the
data statistics are happening abruptly. In our setup, neither
change times nor the probabilistic models are known a priori.

Let X = (X1, X5,...,Xr) be a finite-length stochastic
process over alphabet A, and @ = (z1, z2,...,27), 2t € A,
a realization of X. Assume that data is being generated by
a mixture of K sources S = {S51,..., Sk} where at time ¢,
an unknown source .Sy emits a symbol according to the prob-
ability Py (x|zt™"), where 217! = (21, 29,...,2;_1) is the
memory of the past samples. Note that there is no assump-
tion on the structure of Py (.)’s, i.e. whether if the sources are
i.i.d.or a Markov of certain order.

When the exact source model is unknown a priori, di-
rectly applying maximum likelihood estimator (MLE) to the
most general model would be problematic; First, usually the
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most complex model would be adapted as it often gives higher
likelihoods, even if the source was characterized by a simpler
model. Second, there might not exist enough data samples to
reliably estimate parameters of a complex model. Further, in
applications like compression, when it is required to store or
transmit the model parameters, the overhead due to the com-
plex model representation may be comparable to data itself.
Thus, we need an algorithm to find the simplest but reliable
model that describes the data generation accurately.

Model identification of the source model has been inves-
tigated by many authors when a long sequence from an er-
godic stationary source is observed, and Minimum Descrip-
tion Length principle (MDL) [3] or Bayesian Information Cri-
terion (BIC) have been successfully applied. For a Markov
source, with a known upper bound on its order, it is shown
that BIC and MDL are strongly consistent for order estima-
tion. Without such a bound, the consistency of BIC order
estimator is shown in [4]. The consistency of BIC model esti-
mator for finite memory sources and an arbitrary ergodic sta-
tionary source are also shown in [5, 6].

In [7], the authors investigated the problem when multi-
ple short sequences are observed from a mixture of sources,
such that each sequence is entirely generated by an unknown
source in the mixture. We developed an iterative application
of the EM and BIC to estimate the models and parameters
of the mixture and showed that it can recover true sources’
models when sufficient number of sequences are available.

In this paper, we apply BIC to determine the sources’
models that generate non-stationary data sequences and es-
timate their parameters. Section 2 discusses the proposed al-
gorithm. In Section 3, we investigate a possible application of
the proposed method in universal compression and as to how
it can be used to reduce the redundancy with respect to the
minimum achievable rate. Finally, simulations to verify the
proposed algorithm are provided in Section 4.

1.1. Notations

For an arbitrary sequence © = (z1,Z2,...,Zr), its length is
denoted by {(x) and the subsequence (T, Tim41, - - -, Tn) DY
alt,. For n < m, z}}, is the empty sequence, &. For a set A,
|A| is the number of elements in A.

For a € A and a sequence x, the indicator function of a
attime ¢, 1 <t < (), is defined as 1,(t;x) = 1 if 4 = q,
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otherwise it is zero. Similarly, for a € A and sequence c,

1, ifx; =aand xi:ll(c) =c

0, otherwise

Leo(tix) = {

P(x;0) denotes the probability distribution of x deter-
mined by the parameters 8. And E,(.) is used to denote the
expectation taken with respect to the distribution given by p.

2. MIXTURE CHARACTERIZATION

Assume that there are K ergodic stationary sources S =
{S1,...,SK} where each source Sy generates data accord-
ing to the model Py (-). Let S be the set of all models and
the corresponding parameters for these K sources. At each
time instant ¢, 1 < t < T, one of the sources becomes active
and generates x; based on the past samples, a::tfl. In other
words, if we denote the index of the active source at time ¢ by
ys, then the probability of observing x; is P, (;|z}~") and
knowing the entire sequence of sources, y, the probability of

observing x is
T

P(aly; §) = [[ Py, (zelaf™) ()
t=1

In practice, the indexes of the sources which generate x
are not known a priori. Hence, to fully characterize data gen-
eration model, we need to make some assumptions on the
switching among the sources, or equivalently, the generation
of sequence y. For simplicity, we assume that y is indepen-
dent of z, i.e., the switching among sources is independent
from the generated sequence. This leads us to assume that
the sequence y is also generated from an unknown hidden
source. Although, finite state machines are more general and
suitable to model y, in this paper, for simplicity, we assume
that this hidden source is a Markov of order one!. Therefore,

the probability of a specific source order, vy, is
T

Pu(y) = wy, [ ] Pr(welye—1) (2)
t=2
where w = (w1, ..., wk) is the initial probability distribu-
tions and Py, (Y; = j|Y;—1 = 9) is the probability of switching
from source ¢ at time ¢ — 1 to source j at time t. We assume
that this transition probability is fixed and denot it by a; ;.
Let ® = (w, Py, S) be the set of all parameters of the
model. The probability of observing a sequence x is

P(x;0) =Y Pu(y)P(zly) 3)

To fully identify the data generation model from a set of
observed data X = {z™) ... ™)}, we need to (1) esti-
mate number of sources; K, (2) estimate the hidden source’s
parameters; w and Py, (3) find models of each source, Sy,

The analysis of more complex hidden source model is almost the same
as any source with finite memory is equivalent to a Markov(1) source over an
extended alphabet.

1 < k < K, and (4) finally, estimate parameters of each
source’s model. Note that as currently there is no straight-
forward method to find the number of sources, K, in the de-
velopment of the algorithm we assume that it is known and
fixed. By comparing the performance (e.g. compression rate
or a measure on the fitness of model) for different values of
K, the optimum number of sources is determined.

In the following, we explain our proposed method to it-
eratively estimate the models and parameters of the sources.

2.1. Parameters of the hidden source

Knowing the models and parameters from the previous itera-
tion of the algorithm, estimating the parameters of the hidden
source is straightforward and the same as the ordinary HMM,
which is repeated here for the sake of completeness:

N
w = = 3" Py = k2 ©) (4a)

n=1

e 27]:[:1 S Pyi—1 = kyye = U|z™); ©7)
S N n). @i
>onet 2ot Plyi—1 = klz(™); ©7)

Note that P(y;_1 = k,y; = l|z;©%) and P(y; = k|x; ©%)
can be computed efficiently using Baum-Welch algorithm.

(4b)

2.2. Models and parameters of sources

Here, we consider the class of all stationary ergodic sources
that can be modeled by a tree. The context set of a source S,
denoted by Tg, is the set of all sequences, ¢, such that none
of them is a suffix of another one in 7g. Additionally, for
all sequences x:éo, there exists a unique ¢ € Tg such that
z:ll(c) =candVa € A: P(Xo = a|z"L)) = P(Xo = alc).

We are interested in finding a consistent estimator of the
tree T and its parameters 8 = {f(alc) : Ve € T5,Va € A}
where 6(a|c) := Ps(Xo = a|X:ll(c) =c).

Denote the number of occurrences of context ¢ fol-
lowed by letter a in x = 2] by ng(c,a) = 3, Leo(t; ).
Let ny(c) = > ,c4nx(c,a). Hence, the maximum log-
likelihood of @ with respect to a context tree 7 is

S nalea)log (W) 5)

ceT,acA

Lr(x) =

with the convention that 0log 0 = 0.

In [8] and [6], Bayesian Information Criterion (BIC) is
used to estimate the context tree of an ergodic stationary
source when a sufficiently long sequence from that source is
observed. For a hypothetical tree, 7 , the BIC for a sequence
@ of length I(x) = n, is defined as

BICr(x) = —Lr(x) + M logng,  (6)

and the BIC context tree estimator is given by

Tsic(x) = argmin BICT (). (7)
T
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Theorem 1 (2.11 [6]). For any stationary ergodic source with
context tree Tg, for any constant integer D, Tpro(x)|p —
Ts|p almost surely as l(x) — oo.

Further, the maximum likelihood estimates é(c7 a) =
ng(c,a)
ng(c)

converges to the source parameters Pg(a|c).
where 7| p is the truncation of tree to depth D, defined as

Tlp ={ceT, l(c) < D}U
{e, l(c) = D, cis a suffix of some ¢’ € T}

In [7], we have extended the above results when multi-
ple (relatively short) sequences from one or several sources
are observed such that each sequence is independently gen-
erated from an unknown source. However, here, each part of
any sequence might be generated from a different source and
therefore, the results of [7] are not directly applicable.

For a given set of observations X = {z® ... N},
assume that P(Y; = k|=(™)) is known for all ¢ (or by some
means, we have an accurate estimate of the values). For an
arbitrary tree 7, alla € Aand ¢ € T, let

PY; = k;|:c(")) 1o (¢; a:("))

Define 7ix(¢) and 725, similarly. Assuming ergodicity and sta-
tionarity of the individual and hidden sources [9], it is easy to
show that

Lemma?2. Forallk, 1 < k< K, ﬁﬁ’“k(_?’c‘;) — Py (alc) almost

surely as N — oo, provided that P(Y; = k|x™) # 0 and
1(x™) > I(ca) infinitely often.

Now, for the k™ source, the maximum log-likelihood and
BIC with respect to a tree 7 are defined as

N o ﬁk(c, a)
Gk(c, CL) = ﬁk(c)
‘CT(Xa k) = Z g (C, (I) lOg ék‘ (C, a)
ceT,aeA
BICT(X;k) = —Ly (X5 k) + M log 7y,

and the BIC tree estimator for source Sy, is given by

~

Ti(X) = argmin BICT(X; k) (8)
T

Using Lemma 2, Lemmas 3.1 and 3.2 from [8], the fol-
lowing results can be shown;

Theorem 3. For a constant D, assume that [(x;) > D. Then
'7A7€(X)\D = Ti|p almost surely as N — oo, where Ty, is
the true context tree of source Sx. Moreover, the maximum
likelihood estimates of the parameters converge to the source
parameters.

As the values of P(Y; = k|x(™)) are not known, using
the above theorem to find the sources’ models and parame-
ters is not possible. As such, we propose using the estimated
parameters from the previous iteration of the EM algorithm
to approximate P(Y; = k|z(™) and compute 7 (c, a) and
7 (€), which are then used to refine the estimations of 7, and
0, for 1 < k < K, at each iteration of the EM algorithm.

Summarizing our proposed approach to identify underly-
ing process generating non-stationary data sequences, know-
ing estimations at the i iteration of the algorithm, ©°,

1. Use modified Baum-Welch algorithm to compute
P(Yi_1 =1,Y; = kl2™; ©®") and P(Y; = k|z(™); @%)
foralln, t, k and (.

2. Use (4) to update transition model among sources.
3. Use P(.|x™); ©) to estimate 71, (c, a), Tip(c) and 7.

4. Apply Thm. 3 to update sources’ models and parame-
ters.

3. APPLICATION IN UNIVERSAL COMPRESSION

In universal compression of data from a single stationary
parametric source, it is known that the redundancy of com-
pressing a sequence of length n is 4 log(n) + O(1) where
d is the number of free (unknown) parameters, and using a
common memory of length m between the encoder and the
decoder, reduces the redundancy to 4 log(1+ 2)+o(1) [10].
However, for a data sequence for which each part might be
generated from a different unknown source, no such bound
for the redundancy of universal compression exists. If the
sources’ statistics were unknown but their indexes, y, were
available for the data sequences, then the redundancy of
universal compression would be similar to [10, 11]. How-
ever, without such an extra information, there is no known
bound for the redundancy of universal compression for hid-
den Markov processes.

Memory-assisted compression was proposed to close the
gap between universal compression and the optimum code-
length in finite-length regimes [10]. One way of exploiting
the memory of past data is to estimate the parameters of the
mixture of sources and use them to approximate the proba-
bility distribution of the next symbol, i.e. if @ is the esti-

mated parameter, having observed and compresses xfl_l, to

compress the next symbol, P(X, |zt ™!, (:)) is computed and
an entropy coder like arithmetic codec uses that information
to compress z:. Hence, the the code-length would be approx-
imately — log P(x; ©®) instead of the optimal — log P(x; ©).

4. SIMULATION RESULTS

To verify our approach, we created 3 random tree sources of
depths 2, 2 and 3 over an alphabet of size 4 (Fig. 1 shows
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02 12 22 32 03 13 23 33

Fig. 1. The tree structure of the first source (black circle are
contexts)

an example of a tree structure used in our experiments.). The
sources are designed such that for each context c, their con-
ditional entropy is 1, i.e. Hj, (Xt\Xf:ll(c) = ¢) = 1. Hence,
their entropy is 1 and given a specific sequence of sources y,
the minimum average code-length per symbol is

1
TEXy (—log P(Xy;©)) =1

The initial and transition probabilities between sources are

0.402 0.857 0.052 0.091
w= | 0274 | and A= | 0.041 0.879 0.08
0.324 0.142 0.038 0.82

hence, the asymptotic per-symbol entropy to encode and
transmit y is H(Y) = 0.7325.

For simulations, N = 100 sequences of length 1000 are
generated randomly and used as the memory. Further, we
have generated another set of data to verify and compare the
compression performance algorithm.

Source Identification: For source identification, we ini-
tialized the algorithm with K random i.i.d. sources and then
ran the EM algorithm until the improvement in the likelihood
of data is negligible (less that 10~° per symbol). The nor-
malized (negative of) log-likelihood of the whole sequences
is considered as the cost function. Results of simulations for
different values of K are given in table 1.

Table 1. Average cost for different values of K
K 1 2 3 4 5
cost || 1.49 | 1.44 | 142 | 142 | 1.42

We noticed that the cost generally decreases by increas-
ing number of hypothetical sources, K, but for K > 3 the
improvement is negligible. Therefore, by comparing the cost
functions, we conclude that K = 3 is the optimum choice for
the number of sources in the mixture.

The estimated transition matrix for the sources is

0.856 0.051 0.093
0.042 0.874 0.086
0.142 0.042 0.816

~
AN
~

Also, we found out that the models of the sources were found
correctly (the algorithm decides on the same tree as the origi-
nal source model). For example, the first source was identified
as in Fig. 1 and the KL divergence between the found source
and the true source is less than 0.001.

Memory-Assisted Compression: We used estimated pa-
rameters for the compression of test data and compared the
redundancy of our method to various values of K with those
of Zip and PAQS [12] algorithms.To implement the memory-
assisted PAQS algorithm, we used the common memory be-
tween the encoder and the decoder to train it and then used the
trained algorithm to compress the test data. This gives slightly
better compression performance than the ordinary PAQ. To
compute the redundancy, the optimum code-length is com-
puted using true sources’ models which is R* = 1.4648 bits
per symbol.

The redundancy values are given in table 2. To verify the
effect of the number of detected sources on the compression
performance, we used estimated sources for different values
of K in addition to our proposed algorithm which uses K" = 3
estimated sources. Note that the case K = 1 approximately
equals the universal compression using a single model. Com-
paring performances, we see that increasing the number of
hypothetical sources from 3 to 5 makes the compression per-
formance slightly worse due to the increased number of pa-
rameters to estimate. Also, the proposed algorithm is close to
the optimum code rate (the models and parameters are known)
and performs better than PAQ8. We expect to see higher com-
pression gains when the alphabet size increases or data is be-
ing generated from a more complex models.

Table 2. Redundancy of memory-assisted universal compres-
sion for different methods

C‘X‘l‘;::ii;‘:;“ R=1|K=2 lz;f,"fg‘; R=4|R=5]|pAQs| zp
Redundancy
(bits/1K 68.8 20.0 240 3.20 4.80 19.2 | 277.6
symbols)

5. CONCLUSION

In this paper, we have investigated the problem of universal
compression of non-stationary data sequences. First, we pro-
posed an extended hidden Markov process to model the data.
For the memory-assisted universal compression, we proposed
to use the memory to identify the sources in the mixture. We
showed that under some conditions, the proposed Expecta-
tion Maximization algorithm in conjunction with Bayesian
Information Criterion can successfully estimate the models
of the sources, their parameters and the transition probabil-
ities between sources. Then, we used these estimations in a
memory-assisted compression to entropy-code the sequences.
Our simulation results showed that the proposed approach
outperforms the existing algorithms PAQ8 and Zip.
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