
ENHANCED INDOOR LOCALIZATION THROUGH CROWD SENSING

Eva Arias-de-Reyna∗, Davide Dardari∗∗, Pau Closas†, and Petar M. Djurić‡

∗ Dept. of Signal Theory and Communications, University of Seville, 41092 Seville, Spain
∗∗ Dept. of Electrical, Electronic and Information Eng. University of Bologna, I-47521 Cesena, Italy

† Dept. of Electrical and Computer Eng., Northeastern University, Boston, MA 02115, USA
‡ Dept. of Electrical and Computer Eng., Stony Brook University, Stony Brook, NY 11794, USA

Email: earias@us.es, davide.dardari@unibo.it, closas@northeastern.edu, petar.djuric@stonybrook.edu

ABSTRACT
In localization tasks, one typically assumes a statistical model of
the observations, where the model quantifies the observations by
exploiting interrelationships based on geometry. These models
might incorporate unknown parameters that, in general, are functions
of space. In this article, we propose a crowd sensing method for
estimating a spatial field of a quantity (e.g., ranging biases due
to line-of-sight/non-line-of-sight or path-loss parameter) allowing
for improved indoor localization. Our method takes advantage of
the information provided by various users that navigate the area
of interest. The proposed learning approach is based on Gaussian
processes and its computational cost does not increase with the
number of measurements. We present numerical results that show
how the proposed method estimates a spatial field of biases and how
these estimates lead to much improved performance in estimation of
user positions.

Index Terms— indoor localization, crowd sourcing, Gaussian
processes, spatial field, biases

1. INTRODUCTION

Indoor localization systems are a key technology for enabling
Location-based Services (LBS) [1]. Due to the importance of the
technology, it is not surprising that the literature on addressing the
main challenges associated with indoor localization is quite rich
[2, 3]. There are several methodologies for localization including
fingerprinting and model-based methods. Here, we are interested
in the latter, where localization algorithms are designed so that a
user computes its location in real-time based on its own past and
current measurements (for instance, through Bayesian filtering). In
this context, there is the need to specify a model (usually statistical)
that maps the measurements to geometric quantities (distance, angle,
position, etc.). The adopted model often depends critically on some
(potentially unknown) parameters which are typically location-
dependent such as the line-of-sight (LOS)/non-line-of-sight (NLOS)
condition, ranging bias and variance, or the path loss exponent in the
received signal strength indicator (RSSI). When a subset of model
parameters is unknown, a number of approaches for their improved

EA has been supported by the Spanish Ministry of Economy and
Competitiveness and the Spanish National Research Agency under grant
TEC2016-78434-C3-2-R (AEI/FEDER, EU), by the European Union
(FEDER) and by Junta de Andalucı́a (TIC-155). PC has been partially
supported by the Spanish Ministry of Economy and Competitiveness through
project TEC2015-69868-C2-2-R (ADVENTURE). PMD has been supported
by NSF under Awards CCF-1320626, CCF-1618999 and CNS-1642965. DD
has been supported by the European H2020 project XCycle (Grant 635975).

estimation have been investigated, including methods based on
cooperation and learning [4–11].

The aforementioned learning schemes typically require a huge
amount of measurements to be reliable, which in turn must come
from expensive training sessions that become out-of-date after a
short time. Alternatively, due to the widespread use of mass market
devices with sensing capabilities, mobile crowd sensing has emerged
as an appealing paradigm to enable large-scale applications [12].
In many practical scenarios one may have measurements acquired
by hundreds or thousands of people navigating through an indoor
environment in different hours, days and months and which can
be exploited for improved localization [13]. In this context one
challenging aspect is the “Big data” issue. Considering that in
crowd sensing scenarios the numberN of measurements could grow
exponentially, we want to investigate learning approaches whose
memory and computational burden do not increase with N .

The contribution of this article is in proposing a methodology
for indoor localization which relies on estimating a spatial field
of unknowns of the environment defining the observation model.
It is assumed that the estimated position of a user can be
improved considerably if one has good estimates of these unknowns.
Specifically, we propose a method for learning the spatial field
by exploiting the power of the crowd. After a user crosses the
area of interest, it takes advantage of the available estimated field
obtained from measurements acquired by previous users. In turn,
the estimate of this field is updated by the measurements of this
user. Thereby, subsequent users can also benefit by using the field for
their own localization. This can be termed as an indirect cooperation
approach.

We propose a learning and spatial representation scheme whose
memory and computational burden do not increase with the number
of measurements. Furthermore, our scheme has an important feature
in that it is capable of accounting for spatial correlation. In the
simulation section, we provide numerical results of a ranging model
with unknown bias due to NLOS conditions caused by an obstacle.
We demonstrate how our method can construct the field biases via
the crowd sensing approach and how it gets updated. We also show
how the field estimate can improve the estimated positions of the
users.

2. PROBLEM STATEMENT

Consider a scenario wherein a potentially high number K of mobile
users move in an indoor environment not necessarily at the same
time. For example, the scenario could be a shopping mall where
crowds of users roam during different hours of a day or on different
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days. Without loss of generality, we consider that the users enter
and move in the mall and collect noisy measurements. There are
NA nodes (anchors) in the environment, and they are located at
fixed and known positions I(l), l = 1, 2, . . . , NA. We denote the
measurements of user k by y

(k)

1:N(k) =
{
y
(k)
1 ,y

(k)
2 , . . . ,y

(k)

N(k)

}
,

where N (k) is the number of measurements, and y
(k)
n =

{
y
(k,l)
n

}
with y(k,l)n being the measurement of the kth user with the lth anchor
at time step n. We denote with x

(k)
n the position (i.e., state) of the

kth mobile user at time step n, n = 1, 2, . . . , N (k), relative to the
starting instant of the user’s path.

Often in theory and practice, a probabilistic state-space
Markovian model with additive noise is adopted. It characterizes the
evolution of the state considering the uncertainty about the system
as follows [3]:

x(k)
n = g

(
x
(k)
n−1

)
+w(k)

n , (1)

y(k,l)
n = h

(
x(k)
n ; f (l)

(
x(k)
n

))
+ ν(k,l)

n , (2)

where the function g(·) models the dynamics of the user, the function
h(·) maps the state to measurements, and w

(k)
n and ν

(k,l)
n are

the state process perturbation and measurement noise, respectively.
Here, both w

(k)
n and ν

(k,l)
n are assumed to be independent,

identically distributed (i.i.d.) Gaussian random variables (RVs).
The unknown function f (l)(x) in (2) represents a spatial field
that models position-dependent uncertainties about the observation
model of anchor l. For instance, f (l)(x) could include NLOS /
LOS conditions, path-loss parameters, time-of-arrival (TOA) biases,
etc. Recall that there are NA anchors and that each anchor has
its own spatial field. We denote the set of all fields by f(x) ={
f (1)(x), f (2)(x), . . . , f (NA)(x)

}
.

The state-space model in (1)-(2) can be efficiently solved
by Bayesian filtering. With Bayesian filtering we recursively
estimate the marginal posterior distribution p

(
x
(k)
n |y(k)

1:n

)
=

BF
(
y
(k)
n ,x

(k)
n−1; f(·)

)
of the current state x

(k)
n given all the past

measurements y
(k)
1:n [3]. Here BF

(
y
(k)
n ,x

(k)
n−1; f(·)

)
symbolizes

the Bayesian filter with inputs y
(k)
n ,x

(k)
n−1 and f(·). It is important

to point out that the method requires a constant number of
computations at each time instant n.

There are several approaches to implement the recursive
Bayesian filtering step BF

(
y
(k)
n ,x

(k)
n−1; f(·)

)
. They include

extended Kalman filter (EKF) and particle filtering (PF) methods
[3]. Once the marginal posterior distribution p

(
x
(k)
n |y(k)

1:n

)
of the

current state x
(k)
n is computed, we can obtain a point estimate x̂

(k)
n

of x
(k)
n by using the minimum mean-square error (MMSE) or the

maximum a posteriori (MAP) criteria.

In (2), it is explicitly specified that the measurement y(k,l)
n is

a function of the spatial field f (l)
(
x
(k)
n

)
. How do we construct

f (l)(x) and how do we update it by using measurements of new
users? How do we update the field in an efficient way so that we
minimize the computational and memory burden of the method?
How do we exploit the estimated field for improved localization?

3. MODEL PARAMETERS ESTIMATION THROUGH
CROWD SENSING

In this section we provide answers to the above listed questions. For
notation convenience, we omit the indexes l and k

Consider a generic spatial field f(x), for instance, the ranging
bias with respect to a specific anchor node. Suppose the spatial field
has been observed so far in N locations {xn}, n = 1, 2, . . . , N ,
where the observed field, zn, follows the model

zn = f(xn) + εn n = 1, 2, . . . , N (3)

with the random terms {εn} treated as samples of i.i.d. zero-mean
Gaussian RVs with variance σ2

n.
We want to obtain the maximum statistical knowledge of the

spatial field, f(xT ), at a given location xT, where xT is not in the
set {xn|n = 1, 2, . . . , N}. This will allow a new user to estimate its
position by using the model in (2) with respect to a specific anchor
node. We assume that the user has a rough initial estimate of its
position (e.g., by means of prediction using the dynamic model (1)).

In absence of specific and accurate models for f(x), in non-
parametric regression, one common approach is to assume that f(x)
is a sample from a Gaussian process (GP)

f ∼ GP (µ(x), κ (x,x,)) (4)

with mean µ(x) and covariance function k (x,x,).
The solution of this regression problem is well-known [14].

However, its formal simplicity is hampered by the computational
cost needed to invert the corresponding N × N Gram matrix at
each step which, in general, requires O

(
N3
)

operations. Several
methods have been proposed to overcome this issue including
methods based on the approximation of the Gram matrix with a
matrix having a smaller rank [15]. For regular grids, fast solutions
can be obtained through FFT-based approaches [16]. An alternative
is to approximately describe the GP through state-space models,
thereby making the complexity of the method independent on N
under certain conditions but still requiring matrix inversions at each
step [17]. Other methods are referenced in [15].

3.1. A Combined GP-State Space Method

In the following we generalize the non-parametric regression method
by combining GPs and state-space descriptions of the field proposed
in [18].

Without loss of generality, consider a square area of L × L
square meters centered at the origin of the coordinate system, where
the interest is to estimate the field f(x). Given an appropriate 2D
orthogonal basis with functions {ψm(x)}, m = 0, 1, . . . ,M − 1,
f(x) can be approximated at time instant n = 0 (i.e., before
measurements are collected) as

f(x) ∼=
M−1∑
m=0

cm,0 ψm(x), (5)

where {cm,0} are the coefficients at time instant n = 0. These
coefficents are Gaussian RVs.

To avoid the need to calculate matrix inversion for any new
location of interest, we propose the following combined GP-state
space method.

Consider the conditional RVs cn = [c0,n, c1,n, . . . , cM−1,n]
T,

where cm,n = c0,n|y1:n represents the RV c0,n conditioned on the
field observations z1:n = [z1, z2, . . . , zn] collected at the first n
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locations. It is easy to show that the conditional GP can be expressed
from (5) as

f(x)|z1:n ∼= H(x) cn, (6)

where H(x) = [ψ0(x), ψ1(x), . . . , ψM−1(x)].
The vector of RVs cn can be viewed as the state at discrete time

n of the following state-space model1

cn = cn−1,

zn = H(xn) cn + εn , (7)

where zn is the measurement taken at location xn. The state-space
model (7) is linear and Gaussian and, therefore, it can be converted
into a special case of the Kalman filtering problem, which admits the
following simple recursive solution [19]:

sn = H(xn)Pn−1H(xn)
T + σ2

n,

Wn = Pn−1H(xn)
Ts−1

n ,

mn = mn−1 +Wn(zn −H(xn)mn−1),

Pn = Pn−1 −WnsnW
T
n, (8)

where mn and Pn are, respectively, the M × 1 mean and M ×
M covariance matrix of the the state at time n conditioned on
all the measurements collected until time n. Note that sn is a
scalar and, thus, no matrix inversion is required, which results in a
computational advantage. The initial values of m0 and P0 represent
the a priori knowledge about the field.

Once a new measurement zn becomes available, one step of (8)
is performed. Due to the nature of the problem, the state cn is a set
of joint Gaussian RVs with mean mn and covariance Pn. Then mn

and Pn provide a full statistical description of the RVs {cm,n}, and
hence of the spatial field, at time n. Then the mean and variance of
the field at any location of interest xT can be evaluated as follows:

µn(xT) = E {f(xT)|z1:n} ∼= H(xT)mn,

κn(xT,xT) ∼= H∗(xT)PnH
T(xT)− µ2

n(xT) . (9)

A standard point estimate of f̂(x), given the past n measurements,
would be f̂(x) = µn(x).

Note that only 2M numbers are sufficient to completely describe
the acquired information about the spatial field in the entire area,
which is much less than the memory necessary to store the full set
of N measurements. In fact, in real crowd sensing applications,
N could grow up to thousands whereas M remains fixed. In the
numerical results presented in the next section, the 2D Fourier series
expansion of the periodical repetition of f(x) with a period L in
each dimension is used as in [18].

4. CROWD-ENHANCED LOCALIZATION ALGORITHM:
CASE STUDY

We illustrate how the proposed approach is used within the tracking
operation by considering a specific case study. In this study, the
spatial field f (l)(x) represents the ranging bias due to NLOS channel
conditions of the following observation model in (2):

y(k,l)
n =

∣∣∣x(k)
n − I(l)

∣∣∣+ f (l)
(
x(k)
n

)
+ ν(k,l)

n , (10)

1The first equation implies that we consider time-invariant fields. Our
approach can be readily extended to time-variant fields by including a
dynamic model here.
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Fig. 1. Floor plan, with a random trajectory of a user.

where y
(k,l)
n is the range measurement of the lth anchor at time n,

x
(k)
n is the location of the kth mobile user at time n. According to the

method described in Sec. 3.1, we model f (l)(x) as a realization of a
GP with mean µ(l)(x) and variance V (l)(x) = κ(l)(x,x) for each
anchor node. The LOS locations are characterized by µ(l)(x) = 0

and, typically, by a small variance V (l), whereas the NLOS locations
by µ(l)(x) > 0 and a larger variance. As before, µ(l)

0 (x) and
κ
(l)
0 (x,x,) represent the a priori information about f (l)(x). Such

information is refined as soon as other users’ path estimates become
available.

The proposed approach can be summarized as follows, where
f̂ (k)(·) is the estimate of f(·), according to the information collected
up to the kth user, that can be exploited by the k + 1th user:
For each new user k do:

1. n = 1

(a) p
(
x
(k)
n |y(k)

1:n

)
= BF

(
y
(k)
n ,x

(k)
n−1; f̂

(k−1)(·)
)
;

(b) compute the state estimate x̂
(k)
n ;

(c) n = n+ 1; Iterate from a until n = N (k);

2. update the maps

f̂ (k) = UPDATE
(
x̂
(k)

1:N(k) ,y
(k)

1:N(k) ; f̂
(k−1)(·)

)
;

3. k = k + 1 (new user). Go to 1.
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Fig. 2. True field (bias) for anchor 2.
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Fig. 3. Estimated field (bias) for anchor 2 after 1000 users.

The UPDATE step is performed by a central unit by iterating
N = N (k) times the mapping algorithm in Sec. 3.1 with the
measurements y

(k)

1:N(k) , thus obtaining an updated estimate f̂ (k)(x)

at the kth path of fields f(x) =
{
f (l)(x)

}
, for l = 1, 2, . . . , NA.

This step requires a model that expresses the relationship between
y
(k,l)
n and z(k,l)n in (3). In our case study, the measurement z(k,l)n is

given by

z(k,l)n = y(k,l)n −
∣∣∣x̂(k)

n − I(l)
∣∣∣ , (11)

and y(k,l)n is the range measurement collected by the lth anchor in
that position at time n. That is, z(k,l)n is extracted from the filter’s
innovations. As a result, the random term in (3) has a variance given
by the innovation’s variance of the filter.

We have conducted simulations in which the users move by
following a random path inside a square area. The side size of
the area is L = 50 m, it contains a single obstacle, and it has
four anchors, as shown in Fig. 1. For each user k, we consider
that N (k) = 200 measurements are taken, at intervals of 5 s. The
state process perturbation and measurement variances in (1)-(2) are,
respectively, 0.0156m2 and 0.01m2. For each anchor and a given
location, the sight condition can be classified as LOS or NLOS. For
simplicity we have considered constant bias values: 0 for the LOS
case and 1.5 m for NLOS. Fig. 2 illustrates the corresponding field
f (2)(x) for anchor 2.

We have used the EKF, as Bayesian filtering technique,
combined with three alternative approaches: the crowd-enhanced
localization algorithm, truncating the series expansion of the field to
M = 169 terms; a naive method assuming always LOS, and a genie-
aided method with perfect knowledge of the true sight condition.
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Fig. 4. Estimated field (bias) for anchor 2 after 100 users.
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Fig. 5. Positioning error (distance between estimated and true
locations) as a function of time for the 100th user in the second setup.

We consider two setups for testing the crowd enhanced method.
In the first one, the true location is used in Eq. (11). This is useful
for testing the potential of the method. Fig. 3 shows the resulting
estimated field for anchor 2 as seen by the 1000th user.

We now consider a second setup with K = 100 users, of which
the first 20 travel along prescribed trajectories to provide bootstrap
positions to the learning algorithm. For the remaining users, the
current location estimate is used in Eq. (11). The resulting estimated
field for anchor 2 as seen by the 100th user is shown in Fig. 4,
which is similar to Fig. 3 in spite of the reduced number of users.
Fig. 5 shows the positioning error as a function of the time step, for
the 100th user, whose trajectory is the one shown in Fig. 1. The
improvement in terms of root mean squared error (RMSE), where
the average is performed along the trajectory, of the crowd enhanced
method with respect to the method assuming LOS is 41%, for the
100th user of the second setup, and 64%, for the 1000th user of
the first setup. It can also be observed that the proposed method
approaches the performance of the method with perfect knowledge
of the spatial field.

5. CONCLUSIONS

In this paper, we have presented an approach for improved
localization in indoor environments based on crowd sourcing
capable of learning spatially-distributed unknown parameters
(spatial field). This field can represent the distribution of relevant
parameters over space defining the observation model, such as
NLOS/LOS conditions and path-loss parameters. We have proposed
a combined GP-state space model to characterize this field so that
its representation and maintenance do not grow with additional
measurements. Besides relying on locally received measurements
for estimating its location, a mobile has at its disposal estimates
of spatial fields obtained from the measurements of the previous
mobiles. We have demonstrated by computer simulations how the
localization and tracking performance of this method get close to
that obtained by a genie-aided approach after a reasonable number
of previous users.
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