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ABSTRACT

We explore sound source separation to isolate human voice from
background noise on mobile phones, e.g. talking on your cell phone
in an airport. The challenges involved are real-time execution and
power constraints. As a solution, we present a novel hardware-
based sound source separation implementation capable of real-time
streaming performance. The implementation uses a recently intro-
duced Markov Random Field (MRF) inference formulation of fore-
ground/background separation, and targets voice separation on mo-
bile phones with two microphones. We demonstrate a real-time
streaming FPGA implementation running at 150 MHz with total of
207 KB RAM. Our implementation achieves a speedup of 20X over
a conventional software implementation, achieves an SDR of 6.655
dB with 1.601 ms latency, and exhibits excellent perceived audio
quality. A virtual ASIC design shows that this architecture is quite
small (less than 10M gates), consumes only 69.977 mW running at
20 MHz (52X less than an ARM Cortex-A9 software reference), and
appears amenable to additional optimization for power.

Index Terms— Machine learning, source separation, Markov
Random Field, Gibbs sampling, real-time streaming hardware

1. INTRODUCTION

There is growing interest in the deployment of Machine Learning
(ML) algorithms for applications that classify, categorize, label, and
extract actionable intelligence from large and complex data sources.
To date, this has been successful for enterprise applications, which
use ML and data mining ideas in the context of data-to-action an-
alytics. The research community has shown that many perceptual
applications, such as those in computer vision and machine listening
can similarly be addressed using ML ideas. Most ML algorithms are,
however, computationally intensive, requiring either extreme opera-
tion counts, memory bandwidth, or both. For enterprise level tasks,
this requires distributed software solutions in large clouds. But for
mobile appliances, such solutions are infeasible. The new question
is how to implement ML applications, especially perceptual tasks in
a practical mobile form.

As a step toward answering this question, we focus on one such
perceptual ML case study. We explore sound source separation,
which refers to separating human voice from background noise. In
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the real audio world, humans listen to a mixture of multiple sound
signals and the brain separates out the sound sources naturally. This
is a classical signal processing problem called the cocktail party
problem. However, this source separation problem remains difficult
for computers. The typical issue in implementing separation is the
trade-off between usable quality and computational complexity.

When minimal or no information is provided about the source
or the mixing process, this problem is called Blind Source Separa-
tion (BSS) [1]. Assuming a situation where the number of mixture
signals is less than the sources - two microphones on a cellphone
- we focus on a recently introduced formulation for BSS that for-
mulates the problem as Maximum A Posteriori (MAP) inference on
a grid-connected Markov Random Field [2]. Roughly speaking, we
build a 2-D “image” in the form of a spectrogram for sound mixtures
obtained from each of the microphones. Each column of the image
represents samples from one time point. Each pixel represents the
ratio of energy of the desired sound source to the interfering sound
source at a specific frequency. MRF inference solves iteratively for
binary 0/1 labeling of this image, identifying which frequencies at
which time points properly belong to either the desired sound source
(“1”) or the interfering sound source (“0”).

In this work, we present a novel hardware implementation of
sound source separation using Markov Random Fields. We are not
the first to explore hardware implementations of sound source sepa-
ration [3, 4, 5]. However, our preferred MRF model has some useful
advantages, e.g., the ability to incorporate prior information like the
smoothness of the interchannel level difference of the sound mixture
spectrograms. Previous implementations have very long latency or
do not discuss latency at all, which is critical for any practical imple-
mentations; our hardware has very small latency enabling real-time
streaming source separation.

There are prior studies that focus solely on accelerating Gibbs
sampling inference for Markov Random Fields, which we have used
for source separation. One approach is to accelerate through incor-
poration of novel devices. [6, 7] suggest novel stochastic circuit ar-
chitectures. [8] suggests using resonance energy transfer circuits,
which is an outdated architecture. Neither approach seems practical
in any real system. Another approach used algorithmic modifica-
tions and parallelization [9], but heavy control overhead appears to
pose challenges to achieve real-time performance for mobile.

The reminder of the paper is organized as follows. Section 2
reviews the MRF inference model. Section 3 gives an overview of
our real-time streaming hardware architecture, along with a discus-
sion of trade-offs, such as the size of the MRF, and the number of
sampling inference iterations to find an acceptable MAP labeling.
Section 4 gives the details of test scenario and offers hardware imple-
mentation details and results. Section 5 offers concluding remarks.
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2. SOURCE SEPARATION USING SAMPLING-BASED
INFERENCE ON MARKOV RANDOM FIELDS

Sound source separation can be formed as an MAP inference prob-
lem, where a binary mask label l ∈ {0, 1} that corresponds to the
category of sound sources is assigned to each time-frequency point
in the spectrograms obtained from taking the Short-Time Fourier
Transform (STFT) of input sound mixtures from a microphone ar-
ray. The goal is to find the most probable label assignments for all
the points (or pixels) in the spectrograms. In this work, we assume
that there are desired and interfering sources. This MAP inference
problem can be formulated in terms of the parameters defined on an
undirected grid graph (i.e. a grid MRF) with nodes ν and edges ε as

argmin
l
E(l) = argmin

l

∑
s∈ν

θs(ls) +
∑

(s,t)∈ε

(ls, lt)

 (1)

where θs(ls) and θst(ls, lt) are parameters which penalize certain
choices for a set of labels l and are called the data cost and smooth-
ness cost, respectively [10]. The data cost θs(ls) is related to the
likelihood of a label ls being assigned to the node s. We follow the
Gaussian-based data cost formulation of our previous work [2] in
which the data cost is defined as a function of two Gaussians,

θi(xi) =


(Ai−µ0)

2

2σ2
0

if xi = 0

(Ai−µ1)
2

2σ2
1

if xi = 1,
(2)

whereAs is the Inter-channel Level Difference (ILD), the log ratio of
the energy values seen at the s (time, frequency) point between the
spectrogram of the two microphones. The means, µ0 and µ1, and
the variances, σ0 and σ1, correspond to the mean and variance of
each sound component of the energy ratio Gaussians. The smooth-
ness cost θst(ls, lt) models the prior preference of two neighboring
nodes, defined on edge (s, t), to encode spatial locality in frequency
and time domain in the spectrogram as follows [2]:

θi,j(xi, xj) = ‖xi − xj‖2. (3)

The goal of the optimization problem (1) is to find the set of labels l
among all possible per-pixel label choices that minimize the objec-
tive function. This overall sum is called energy and (1) is called an
energy minimization problem.

In recent years, several algorithms have been proposed to solve
the above MRF inference problem [11]. Existing algorithms cannot
be run in real-time without hardware acceleration. In the domain
of MAP inference, we argue that sampling-based algorithms inher-
ently have the most potential for parallel computation, which is an
important consideration for hardware implementations. The Gibbs
sampler, a variant of the Markov Chain Monte Carlo (MCMC) sam-
pler, was first introduced in the context of computer vision by Geman
and Geman [12]. It is used to obtain a sequence of samples approx-
imately derived from a specified distribution when direct sampling
is intractable. The samples can be used to approximate the marginal
distribution of one of the variables of the MRF. Suppose we have a
joint distribution P (x1, ..., xn) where xi are the labels on each node
as stated in the prior discussion. We can use the Gibbs sampler to
sample from the P (x1, ..., xn) distribution. In the case of an MRF,
the conditional distribution of each variable is reduced to the condi-
tional distribution given the Markov blanket of that variable.

Just as it is common for users to provide an initial seed for im-
age segmentation [13], we can also provide initial observations or

Algorithm 1 Creating masks for source separation via MCMC-EM
1: procedure SOURCESEPARATIONMASK(Ai, x)
2: for each EM iteration do
3: ConstructMRF
4: (E-Step) GibbsSampling:
5: for t = 1 to max iteration T do
6: for each node i = 1 to I do
7: x

(t+1)
i ∼ P (xi|x(t+1)

1 , ..., xt+1
i−1, x

t
i+1, ..., x

(t)
n )

8: end for
9: end for

10: (M-Step) UpdateGaussians µ0,1 and σ0,1

11: end for
12: return x
13: end procedure

STFT

STFT

Pre-
Processing

Gibbs 
Samping 
Inference

Post-
Processing ISTFT

Update 
Gaussian 

Parameters

ILD Generation, 
MRF Construction

Decision, 
Masking

Sampled!
at 16 KHz 1024-point 

FFT, 50% 
overlap

Repeat for 
EM_Iterations

Repeat for 
Gibbs_Iterations

Signal 
Reconstruction

Fig. 1. Streaming source separation

guesses about the underlying distribution. However, such user in-
tervention is hard to impose on a real-time system. Thus, we per-
form an unsupervised learning where the Expectation-Maximization
(EM) approach is used to estimate means and variances of the dis-
tribution as shown in Algorithm 1. We start with rough guesses of
the Gaussian parameters for the data cost formulation based on the
geometric orientation of microphones and sources. After one Gibbs
sampling inference iteration on the graph, Gaussian variables are re-
calculated from the converged labels by grouping the nodes corre-
sponding to each of the binary labels. The inference iterations are
repeated using the updated data cost based on the new Gaussian pa-
rameters until convergence and the resulting labels are used to create
the mask for separation. This is especially useful in scenarios where
the sources are not stationary with respect to the microphones.

3. REAL-TIME STREAMING IMPLEMENTATION

The flow of the algorithm and each corresponding step of the stream-
ing source separation system is shown in Figure 1. The following
subsections will describe each of our steps in detail, providing ex-
planation for design choices made with the final goal of achieving a
real-time streaming implementation.

3.1. Spectrogram generation

In the first step, the pair of audio input streams are converted to a pair
of spectrograms by STFT. In order to construct a streaming version
of source separation using MRFs, we have to decide on the temporal
granularity of the source separation. In order to decrease the latency,
we must use the finest granularity possible for each segment of input
stream processed at a time. Here we assume that our system pro-
cesses the input stream based on the size of the FFT, which is the
finest granularity that can be taken with our implementation. We
perform a 1024-point FFT with 50% overlap and a cosine window.
The result of each 1024-point FFT will correspond to single column
of the ILD matrix and the MRF generated from it.
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3.2. ILD generation and MRF construction

As audio input is streamed and FFT is taken, it is appended as a
new column to the ILD matrix which plots the ILD values for each
(time, frequency) point. In order to take advantage of spatial locality
in both the frequency and time domain, it is best to have the ILD
matrix and the resulting MRF constructed to be as large as possible.
At a higher level, the larger the MRF, the better the source separation
will be. However, a larger MRF means longer inference runtime, and
a larger memory to store the previous columns generated.

Initially, the Gaussian parameters for calculating the data cost
of the MRF are approximated based on the location and the orienta-
tion of the sources relative to a pair microphones on a mobile phone.
These are updated using EM once the inference is completed. The
ILD generation and MRF construction is repeated with the updated
parameters, and the process is repeated until convergence of the pa-
rameters. Note that a single column of the MRF does not contain
much information about the approximated Gaussian mixtures. Al-
though it will have a smoothness prior in the vertical (frequency)
direction, it will not have horizontal (temporal) prior information.
Instead of constructing a single column MRF, we store several previ-
ous columns of MRF from previous time samples of the input stream
to build a larger MRF to take advantage of smoothness in the tem-
poral direction. Since the ’vertical’ spatial dimension of the MRF
depends on the size (number of frequencies) of the spectrograms or
the size of the FFT taken, it will be constant at 513. The width can
be adjusted for quality and execution time trade-off.

3.3. Gibbs sampling MAP inference

The inference on the constructed MRF is analogous to how an FFT
works in streaming fashion. The steady stream of newly constructed
MRF columns can be understood as similar to input samples com-
ing in for STFT block. The MRF is a sliding window that slides
through streaming inputs, the MRF columns, that are constructed
from previous stages with overlap. Another variable to determine
is the number of Gibbs sampling inference iterations per MRF con-
structed. Ideally, the inference must be repeated until convergence
of the resulting label values. The trade-off between the quality of
the final source separation masking labels and the run-time must be
considered when selecting the number of iterations to run.

3.4. Masking, updating Gaussians and output reconstruction

Once the inference is completed, the Gaussian parameters are up-
dated using the resulting labels. The updated Gaussian parameters
will be used to regenerate the MRF. Once we update the MRF with
new Gaussian parameters, Gibbs sampling inference is run again to
produce new labels and the Gaussian parameters. This process is re-
peated until it reaches the desired number of EM iterations. Once
done, labels can be used to create a mask that will separate the
sources from using the spectrogram created in the earlier steps. The
separated sources are then reconstructed to an audible output audio
stream using an ISTFT.

4. EXPERIMENTS AND RESULTS

4.1. Experimental audio setup

To test our implementation, we chose two speech signals, one fe-
male and one male, from the TIMIT corpus [14] as the input signals.
These speech signals were sampled at 16,000 Hz and encoded with
16-bit PCM. For convenience, we modeled the audio input as a pair
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Fig. 2. Proposed Gibbs Sampling Hardware Architecture

of microphones separated by 15 cm, a distance equal to the length of
a typical mobile phone. We created two convolutive mixtures with
simulated room reverberations corresponding to each microphones
by using the Roomsim Matlab toolbox [15]. A comprehensive mix-
ture of a desired source and five interferences in the cellphone envi-
ronment from [2] is used for the experiments. The qualitative per-
formance of the implementation is measured by Signal-to-Distortion
Ratio (SDR) [16].

4.2. Software Reference Architecture

We have implemented a software prototype of source separation us-
ing MRF via Gibbs sampling coded in C. Prior to considering the
mobile use-case, we benchmarked the prototype running on an Intel
Xeon X6550 2GHz. This high performance CPU took 31.695 ms
to run sound source separation on 32 ms of input audio, which is
the smallest granularity given 16 KHz sampling rate and 1024-point
STFT. This essentially means that at least 64 ms of latency will be
required. International Telecommunication Union’s recommenda-
tion [17] regarding mouth-to-ear delay latency indicates that most
users are “very satisfied” as long as latency does not exceed 200 ms.
However, a typical latency or mouth-to-ear delay of LTE network
is assumed to be approximately 160 ms [18], and delay of source
separated voice on LTE network easily exceeds 200 ms. This un-
acceptable level of latency justifies our interest in custom hardware.
Additionally, we need to understand the power consumption, using
a more realistic mobile cpu. We benchmarked code on a simulated
ARM Cortex-A9 CPU using GEM5 [19] and McPAT [20]. We esti-
mate the peak power consumption of source separation on the ARM
to be 3.661 Watts, which is unacceptable for mobile usage.

4.3. FPGA Implementation

Figure 2 is the top level architecture of our proposed streaming hard-
ware. We currently have a fully synthesized Verilog version of our
design running on a Convey HC-1 hybrid-FPGA platform [21]. The
platform consists of Intel Xeon 5138 2.13 GHz dual-core host pro-
cessor, and four Xilinx Virtex 5 (V5LX330) FPGA coprocessors
running at 150 MHz each. The system has a single cache-coherent
shared virtual memory which allows easier data transfers and com-
munication between the host and the co-processors. Our design was
able to fit on one Virtex 5 with resource utilization shown in Table 1.

Our system uses a 32-bit fixed-point arithmetic with 16 frac-
tional bits (Q16). The number of fraction bits required to convert
the floating point arithmetic of the source separation algorithm was
determined by checking dynamic range and adequate amount of pre-
cision required to produce correct values within the system. The ex-
ception to this fixed-point number format is input and output stream
values that are fractions with magnitude less than 1. To maximize
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Table 1. FPGA Resource Utilization
Resource Utilization
Slice Register 101302 / 207360 (48%)
Slice LUT 90280 / 207360 (43%)
Slice LUT FF 119300 / 207360 (57%)
BRAM 113/288 (39%)
DSP 36 / 192 (18%)

Table 2. Memory Instances
Memory Size Number of Instances

512x32 8
1024x8 2

1024x16 2
1024x32 20
8192x1 4

8192x32 3
Total Size 207 KB

precision, input to STFT and ISTFT to output uses 31 fractional bits
(Q31), with a sign bit. The iterative nature of the algorithm requires
its intermediate results to be stored in buffers resulting in numer-
ous FIFOs as shown in Figure 2. The size and number of mem-
ory instances have been listed in Table 2, with the total of 207 KB
used. The hardware is fully parameterized and can be set to allow
expansion to other larger inference applications. Figure 3 shows the
Gibbs sampler node, which corresponds to the sampling done on
a single node in the constructed MRF. A node takes labels of con-
nected neighbors in the MRF required to calculate the smoothness
cost, along with the data cost information corresponding to that node
for each of the possible binary labels, 0 and 1. The sums of the costs
corresponding to each label is then passed through fixed-point expo-
nential units [22] and a divider to create a probability distribution.
Each node also contains a fixed-point pseudo random number gener-
ator based on LFSR [23], which generates a random number from a
uniform distribution to compare to the probability distribution found
from the total costs to determine the label. The log function used to
calculate ILD is implemented in fixed-point based on [24] and [25].

The pipeline structure containing the node is a module within
the Gibbs sampling inference block, which contains the buffer for
storing the data cost of the current EM iteration. The size of the
data cost buffer is 513 frequency points by temporal (timed samples)
width of the MRF, which is adjustable by a parameter. As discussed
earlier, a larger MRF will produce better qualitative results with the
sacrifice of the run-time. By experimenting with multiple widths
with varying EM and sampling iterations and observing the resulting
SDR values on our test case, we were able to decide on the EM and
Gibbs sampling iterations of 4 each and the MRF block width of 8
time points on spectrogram, which corresponds to 256 ms of audio
stream. Each MRF constructed will contain information from input
audio up to 256 ms in the past. A correlation to input data previous
to that is preserved by the labels for the MRF block that are buffered
and updated each iteration as well. The number of pipeline modules
can easily be selected as well.

For our implementation, the goal was to meet the mouth-to-ear
delay recommendation of 200 ms of the International Telecommuni-
cation Union (ITU) [17] as we envisioned its application on a cell-
phone. With the FPGA running at 150 MHz, we were able to achieve
1.601 ms latency from the input to the output stream. This is one 512
sample block of input which corresponds to 32 ms of audio. Even
with 160 ms LTE network delay, we are able to limit the mouth-to-
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Fig. 3. A functional diagram of a Gibbs sampling node.

ear delay under 200 ms. The resulting implementation requires 64
bits of memory data width and 1.2 GB/s of bandwidth.

4.4. Preliminary ASIC Design Study

Fig. 4. The ASIC layout.

Although FPGA performance re-
sults show that source separation is
feasible to run in real-time on the
FPGA, it is not practical for a real
appliance. We have used the IBM
45 nm library to synthesize and lay-
out our design and find gate count,
area and power estimates of a vir-
tual ASIC prototype implementa-
tion. Our preliminary ASIC proto-
type shown in Figure 4, resulted in
gate count of 9,126,222, area of 6.6
mm2 and consumes 469.332 mW
at 150 MHz. As expected, the over-
all design is attractively small, under 10 million gates. The total
power consumption, however, at 469.332 mW, is a bit larger than
expected - though still 8X better than our ARM reference model.
We observe that SRAM memory power dominates the implementa-
tion with 403.836 mW of the 469.332 mW total. This appears to be
a side-effect of our current technology library, which is not aimed at
low-power mobile uses. We started with 150 MHz to synthesize and
layout our design to match the operating frequency of our FPGA im-
plementation. However, the analysis above show that we have more
that enough room to tolerate longer latency while meeting the delay
recommendation of ITU. When we resynthesized our design using a
much lower frequency of 20 MHz, which still results in a satisfac-
tory latency, we achieved a significantly lower power of 69.977 mW.
We are currently working to resynthesize using a mobile library, and
also optimize our design for lower memory usage. Nevertheless,
even this early result suggests that our sampling based, MRF infer-
ence based architecture can be viable for the mobile use case.

5. CONCLUSION

We presented a novel real-time streaming architecture for sound
source separation using MRFs and Gibbs sampling inference. An
FPGA implementation confirms real-time feasibility, runs at 150
MHz, requires only 207 KB RAM, and achieves an SDR of 6.655
dB with 1.601 ms latency. A rough, preliminary ASIC design run-
ning at 20 MHz requires fewer than 10 million gates, with power
consumption of 69.977 mW - 52X better than an ARM Cortex-A9
software reference design - but shows the need for more ASIC
optimization using a lower-power technology library and design op-
timization for lower memory usage. Overall, we believe our design
study shows that our sampling inference-based architecture can be
viable for real-time audio separation for the mobile use case.
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