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ABSTRACT

Many researchers use convolutional neural networks with
small rectangular filters for music (spectrograms) classifi-
cation. First, we discuss why there is no reason to use this
filters setup by default and second, we point that more effi-
cient architectures could be implemented if the characteristics
of the music features are considered during the design pro-
cess. Specifically, we propose a novel design strategy that
might promote more expressive and intuitive deep learning
architectures by efficiently exploiting the representational ca-
pacity of the first layer – using different filter shapes adapted
to fit musical concepts within the first layer. The proposed
architectures are assessed by measuring their accuracy in pre-
dicting the classes of the Ballroom dataset. We also make
available1 the used code (together with the audio-data) so that
this research is fully reproducible.

Index Terms— Convolutional neural networks, deep
learning, music, classification, information retrieval.

1. INTRODUCTION

Due to the convolutional neural networks (CNNs) success in
image classification, its literature significantly influenced the
music informatics research (MIR) community that adopted
standard computer vision CNNs for music classification [1,
2, 3]. As long as these CNNs were designed for computer
vision tasks, it is reasonable that some researchers assume
that audio events can be recognized by seeing spectrograms
[1, 2] (that are image-like time-frequency audio representa-
tions) and indeed, most MIR deep learning practitioners tend
to use spectrograms as input to their CNNs [1, 2, 3, 4, 5]. The
wide use of small rectangular filters in music classification
[1, 3, 4, 5] (a standard filter shape in computer vision: m �
M and n� N )2 states how straight-forward MIR researchers
adopted computer vision CNNs, because note that image pro-
cessing filter dimensions have spatial meaning while CNN-
spectrogram filters dimensions correspond to time and fre-

1https://github.com/jordipons/ICASSP2017
2Throughout this study we assume to use CNNs, with the input set to be

music spectrograms of dimensions M-by-N and the CNN filter dimensions to
be m-by-n. M and m standing for the number of frequency bins and N and n
for the number of time frames.

quency. Therefore, wider filters may be capable of learn-
ing longer temporal dependencies in the audio domain while
higher filters may be capable of learning more spread timbral
features. Hence, there is no grounded motivation for using by
default such small rectangular filters for MIR since some rele-
vant musical features (ie. rhythm, tempo or timbre) have long
temporal dependencies or are spread in frequency. This ob-
servation motivates the hereby study, where we consider the
characteristics of music for proposing filter shapes more suit-
able for music spectrograms. We hypothesize that MIR CNNs
can benefit from a design oriented towards learning musical
features rather than seeing spectrograms.

Moreover, a recent publication [4] points that small rect-
angular filters can limit the representational power of the first
layer since these can only represent sub-band characteristics
(with a small frequency context: m�M )2 for a short period
of time (with a small time context: n� N )2. Hence, the net-
work needs to combine many filters (in the same layer and/or
in deeper layers) in order to model larger time/frequency con-
texts, what adds an extra cost to the network (wider layers
and/or deeper networks). Therefore, if an individual filter can
model a larger time/frequency context in the first layer: (i)
this might allow achieving a similar behavior without pay-
ing the cost of going wider and/or deeper; (ii) deeper layers
are set free to model context – what may allow more expres-
sive CNNs at a similar cost since depth can then be employed
for learning other features; (iii) filters might be more inter-
pretable since the whole desired context would be modeled
within one single filter on top of a spectrogram (with clear
dimensions: time and frequency); and (iv) interpretable fil-
ters allows taking intuitive decisions when designing CNNs
in order to make an effective use of a reduced number of pa-
rameters. From previous remarks one can observe that very
efficient3 CNNs can be conceived by enabling the first layer
to model larger contexts. Finally, note that given that some
relevant musical features have long temporal dependencies or
are spread in frequency, wide or high filters in the first layer
(modeling larger time/frequency contexts) might be able to
efficiently represent these features. Therefore, the here pro-
posed strategy ties very well with the previously described
need of proposing musically motivated filter shapes.

3This is the notion of efficiency we assume all through this publication.
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Our aim is to discover novel deep learning architectures
that can efficiently model music, what is a very challeng-
ing undertaking. This is why we first focus on studying how
CNNs can model temporal cues, one of the most relevant mu-
sic dimensions. By considering the introductory discussion,
in Section 2 we put emphasis on the design of a single-layer
CNN designed to efficiently model temporal features, in Sec-
tion 3 the proposed architectures are assessed by measuring
their accuracy in predicting the genres of the Ballroom [6]
dataset and Section 4 concludes.

2. ARCHITECTURES

It is common in deep learning to model temporal dependen-
cies in sequential data with recurrent neural networks (RNNs)
[7, 8]. Two successful methods that used RNNs for modeling
temporal features from music audio are: Böck et al. [7] for
tempo estimation and Krebs et al. [8] for downbeat tracking.
However, note that we aim to study the capacity of CNNs for
modeling temporal features. Before moving forward, we want
to discuss why RNNs are not integrated within that study:
first, CNNs are suitable for modeling short time-scale tem-
poral features since the available context is limited by the size
of the input spectrogram4 and second, RNNs are suitable for
modeling short and long time-scale temporal features since
the available context can be the whole music recording. By
modeling short time-scale features in the first layer, deeper
layers are set free for modeling other features. Consequently,
if a RNN layer is stacked on top of a CNN that is modeling
short time-scale features (ie. rhythm, tempo or onsets), such
RNN can focus on learning long time-scale temporal features
(ie. structure). This is why we focus on the efficient mod-
eling of short time-scale temporal features with single-layer
CNNs and we leave for future work modeling long time-scale
temporal features with RNNs stacked on top of CNNs.

Some existing research has focused on using CNNs for
modeling temporal features, proposing innovative architec-
tures: Durand et al. [9] used three parallel CNNs for mod-
eling different music dimensions, Pons et al. [4] proposed a
light CNN for learning temporal cues with wide filters (1-by-
n) and max-pool frequency summarization, and Phan et al. [2]
proposed using filters representing different time-scales (set-
ting n differently for every filter) with a max-pool layer that
spans all over time (operation that enables time-invariance).
Together with the above introduction, these works [2, 4, 9]
conform the basis for designing efficient CNN architectures.

Short time-scale temporal features in music audio are fun-
damental for describing several musically relevant concepts:
onsets (ie. attack-sustain-release signatures define many in-
struments, and these are a relevant cue for predicting genre),
rhythm (ie. can define a genre like waltz) or tempo (ie. some

4This is the definition of short time-scale temporal features that we as-
sume: a short time-scale temporal feature can be described within the avail-
able context limited by the size of the input spectrogram.

genres have faster tempos than others). Note that different
time-scales are required for modeling these musical concepts.
For example, for modeling onsets one requires a shorter time-
context than for modeling tempo or rhythm. If a long filter is
used for modeling onsets, most of the weights would be set to
zero: wasting part of the representational power of the filter.
Therefore, and similarly as in Phan et al. [2], we propose set-
ting different n’s for the filters in the first layer for being able
to efficiently represent several time-scale contexts.

We propose two complementary architectures meant to
validate the foundations of our novel design strategy, that pro-
motes an efficient use of the representational capacity of the
first layer by using different musically motivated filter shapes
that model several (time-scale5) contexts:

I) O-net is designed to efficiently model onsets, a short
time-scale temporal feature. Different (short) filters of 1-by-n
followed by a max-pool layer of 4-by-N’ 6 might be capable
of capturing in which frequency band a short time signature is
occurring, with n ∈ [6, 11, 16, 21, 26, 31, 36, 41]. The O-net
consists on 5 filters for each different filter length n. In total,
there are 40 filters in the same (first) layer.

II) P-net is designed to efficiently model short time-scale
patterns, ie. rhythm or tempo. Different (longer) filters of
1-by-n followed by a max-pool layer of 4-by-N’ 6 might be
capable of capturing in which frequency band a time pattern
is occurring, with n ∈ 46+5 ·f where f ∈ Z | 0 ≤ f ≤ 34
stands for the filter number. The P-net consists on 35 filters of
different length in the first layer ranging from 46 ≤ n ≤ 216.

We propose combining these architectures in parallel [9]
and as a result of that, the resulting model is shallow: a single
layer with many different filters. On top of this parallel com-
bination of CNNs (no matter which combination) we stuck a
softmax layer as output – Table 1 outlines the studied mod-
els. Note that these models fulfill the specifications of our
design strategy (filter shapes are intuitively designed to repre-
sent different relevant musical contexts using a reduced num-
ber of parameters in the first layer) and therefore, it serves as
test-bed to validate the proposed design strategy.

2.1. Filter and max-pool shapes discussion

We aim to investigate how CNNs can efficiently model short
time-scale temporal features in music audio spectrograms.
For doing so we propose using temporal filters (1-by-n) [4],
that are a cheap filter expression to model temporal features
where the temporal context can be easily adjusted by setting
n. For example, faster patterns can be better represented by
shorter filters than slower patterns, what allows minimizing
the number of parameters used for these filters. But also
note that shorter filter lengths can facilitate modeling faster

5Within the context of a spectrogram: n ∈ [1, ..., N ].
6N’ and M’ denote, in general, the dimensions of any feature map. There-

fore, although the filter map dimensions will be different depending on the
filter size, we will refer to their dimensions by the same name: N’ and M’.
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patterns since shorter filters may better fit these patterns.
Therefore, in order to efficiently model different time-scales,
different filter lengths (n) are set. However, how to set the
n’s appropriately? We dimensioned them by defining nO and
nP , that stand for the longer n in O-net and P-net, respec-
tively. nO is set to be the slowest (longest) onset in the dataset
and nP the slowest (longest) pattern. We assume 6 beats to
be enough to represent a temporal pattern and therefore, the
length of a P-net filter is determined by: n = 1 + 5 · ∆Fr
where ∆Fr ∈ Z stands for the number of frames between
beats, a frame-based inter-beat interval depending on the
tempo (bpm). Note that ∆Fr approximates the onset length
for a given tempo. Given that the slowest tempo in the dataset
is of 60 bpm’s [6] and the STFT-spectrogram is computed
with a window of 2048 samples (50% overlap) at 44.1 kHz:

nO ≡ ∆Fr|bpm=60 =
44100× 60(sec)

60(bpm) × 2048× 0.5
= 43

nP ≡ 1 + 5 ·∆Fr|bpm=60 = 216

Note that this result corresponds with the filter lengths pro-
posed for O-net: 1 ≤ ∆Fr ≤ 8 ≡ 6 ≤ n ≤ 41 ≤ nO and P-
net: 9 ≤ ∆Fr ≤ 43 ≡ nO ≤ 46 ≤ n ≤ 216 ≤ nP . As seen,
the way we define nO is arbitrary and depends on the dataset
characteristics. Therefore, it could be that for datasets with
faster tempos some patterns are learned by O-net. However
this is not a capacity problem for the model since five filters
of equal length are available in O-net, what enables learning
onsets and patterns simultaneously (if necessary). An alterna-
tive way of seeing the design process, that would cope with
the issue of O-net learning patterns, is to remove the distinc-
tion between onsets and patterns. However, we argue that it is
interesting to define separately O-net and P-net since shorter
filters are cheaper, what allows adding extra learning capacity
(filters) to O-net at a low cost. This is why O-net (but not
P-net!) includes 5 filters for each different filter length.

Additionally, note that even though 1-by-n filters them-
selves can not learn frequency features, upper layers may be
capable of learning frequency cues since the frequency inter-
pretation still holds for the resulting feature map because the
convolution operation is done bin-wise (m=1). Actually, this
observation motivates the sub-band analysis interpretation for
the max-pool layer (4-by-N’), where the most prominent ac-
tivations of the 40 bins feature map are summarized in a 10
bands feature map – note that it is common in the MIR litera-
ture to do sub-bands analysis for modeling temporal features
[10, 9]. One can also note that the max-pool operation picks
only the most prominent activation all over the x-axis (N’) of
the feature map. This has two main advantages: (i) although
the dimensionality of the feature maps varies depending on
the length of the filters, after pooling over N’ all the feature
maps have the same x-axis size – one; and (ii) the learnt fea-
tures are time-invariant [2].

3. EXPERIMENTAL RESULTS

Experiments are realized using the Ballroom dataset that con-
sist on 698 tracks of ≈ 30 sec long, divided into 8 music gen-
res [6]. Two main shortcomings are regularly issued against
this dataset: (i) its small size and (ii) the fact that its classes
are highly correlated with tempo – although being proposed
for evaluating rhythmic descriptors. And precisely, the previ-
ously described shortcomings motivate our study. Deep learn-
ing approaches rely on the assumption that large amounts of
training data are available to train the large amount of param-
eters of a network, and the data assumption do not holds for
most MIR problems. We want to study if a CNN architecture
designed to efficiently represent musical concepts can achieve
competitive results in a context where an small amount of
parameters is trained from a small dataset. The Ballroom
dataset provides an excellent opportunity for studying so, due
to its reduced size and because its classes are highly correlated
with short time-scale temporal features (tempo and rhythm).
We exploit this prior knowledge to propose and assess some
small efficient musically motivated architectures that might
be capable of learning these temporal features.

The audio is fed to the network through fixed-length mel
spectrograms, N = 250 frames wide. It is set to 250 in or-
der to fit the longest filter in P-net: n = 216. Throughout
this work we use 40 bands mel-spectrograms derived from a
STFT-spectrogram computed with a Blackman Harris win-
dow of 2048 samples (50% overlap) at 44.1 kHz. Phases
are discarded. A dynamic range compression is applied to
the input spectrograms element-wise: log(1 + C · x) where
C = 10.000 [11]. The resulting spectrograms are normal-
ized so that the whole dataset spectrograms (together) have
zero mean and variance one. The activation functions are lin-
ear rectifiers (ReLUs) with a final 8-way softmax, where each
output unit corresponds to a Ballroom class. 50% dropout
is applied to the output layer. The output unit having the
highest output activation is selected to be the model’s class
prediction. Each network is trained using gradient descent
with a minibatch size of 50, minimizing the categorical cross-
entropy. Networks are trained from random initialization [12]
(with the same random seed) using an initial learning rate of
0’01. A learning schedule is programmed: the learning rate is
divided by ten every time the training loss gets stacked until
there is no more improvement. The best model in the vali-
dation set is kept for testing. Mean accuracies are computed
using 10-fold cross validation with the same randomly gen-
erated train-validation-test split of 80%-10%-10%. Since the
input spectrograms are shorter than the total length of the song
spectrogram, several estimations for each song can be done –
we cut the input spectrograms with overlapping, and the hop-
size is set differently depending on the experiment7. A simple

7Overlapping input spectrograms can be seen as a data augmentation tech-
nique. But also note that the smaller the hop size, the more estimations per
song are done at test time – what can be useful for the majority vote stage.
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Model: hop # params accuracy Model: hop # params accuracy
O-net 250/80 4,188 76.66/85.24 % 4x O-net + 4x P-net 250/80 46,408 88.82/91.55 %
P-net 250/80 7,428 83.95/89.26 % 8x O-net + 8x P-net 250/80 92,808 88.68/92.27 %
2x O-net 250/80 8,368 81.53/86.54 % Marchand et al. [10] - - 96 %
O-net + P-net 250/80 11,608 87.25/89.68 % Time [4] 80 7,336 81.79 %
2x P-net 250/80 14,848 85.67/89.11 % Time-freq [4] 80 196,816 87.68 %
2x O-net + 2x P-net 250/80 23,208 87.25/91.27 % Black-box [4] 80 3,275,312 87.25 %

Table 1. Mean accuracy results comparing different approaches predicting the Ballroom dataset classes. # params stands for
the number of parameters of the model and hop for the hop-size when cutting the input spectrograms with overlapping.

majority vote approach serves to decide the estimated class
for each song.

Results are compared with the state-of-the-art of the Ball-
room dataset (Marchand et al. [10]) and with three deep
learning approaches applied to this dataset (time, time-freq
and black-box [4]). Marchand et al. [10] is based on a scale
and shift invariant time/frequency representation that uses au-
ditory statistics, not deep learning. The time architecture has
a single CNN layer with 1-by-60 filters (one filter shape in a
single-layer CNN). Time-freq and black-box [4] have two lay-
ers: CNN + feed-forward and they differ in the filter shape
setup of the CNN layer. Time-freq uses 1-by-60 and 32-by-1
filters (two different filter shapes in the CNN layer) and black-
box uses small rectangular filters (one filter shape in the CNN
layer). For fair comparison wrt. these models, two hop sizes
are used: hop = 250, 80. When setting hop = N = 250, no
input spectrograms overlap is used – equally as in [4]. How-
ever, the input spectrogram is set smaller (N = 80) for the
three deep learning approaches [4] and therefore, more train-
ing examples are available. In order to have as many training
examples as in [4], we also compare our results when hop
= 80, although overlapping data is used. These two setups
(hop = 250, 80) provide a fair test-bed to compare our results
with the state-of-the-art.

Results are presented in Table 1. First, observe that for
hop = 80 most of the here presented models (very small and
shallow) can achieve better performance than time, time-freq
and black-box (having many repeated filter shapes in the first
layer). But also observe that O-net + P-net architectures, hav-
ing the most diverse combination of filter shapes, are the best
among the presented models. Therefore, these results vali-
date the here proposed design strategy of adding musically
motivated filters with different shapes (instead of having the
same filter repeated many times) in the first layer. Second,
observe that this novel design strategy is specially useful in
circumstances when not many training examples are avail-
able – observe that for hop = 250 bigger accuracy gains
are achieved when more different filter shapes are available
(ie. compare O-net + P-net and 2x P-net). Since adding
different filter shapes is cheaper than doubling the capacity
of the network, the here proposed design strategy allows in-
creasing the representational power of the first layer at a very

low cost. Efficiently using a reduced number of parameters
(92,808� 196,816� 3,275,312) for modeling the main di-
mensions of a problem is a straight-forward way of fighting
overfitting in scenarios where small datasets and little com-
putational resources are available – and note that the short
time-scale temporal features are the most relevant dimension
in the Ballroom dataset. Third, note that models containing
P-net are the most successful ones. We speculate that this
is because the most relevant features in this dataset (rhythm
and tempo) can be better encoded in P-net than in O-net, as
we hypothesized during the design process. And fourth, none
of the proposed models overcome the result from Marchand
et al. [10]. However, note the limitations of the here pro-
posed models (basically designed to model short time-scale
temporal features and to validate the proposed design strat-
egy): only a limited amount of 1-by-n filters are used, within
a single layer and with a limited amount of data. In future
work we plan to increase the representational capacity of the
first layer (ie. by also using filter shapes designed to model
timbre), we want to stack more layers on top of an efficient
CNN (aka. go deeper, ie. with RNNs), and we want to use
more data to train the model (ie. by setting hop=5).

4. CONCLUSIONS

We have presented a novel CNNs design strategy that con-
sists on modeling different (time-scale) contexts within the
first layer with different (musically motivated) filter shapes
that are intuitively designed to represent (musical) concepts.
Our results show that this design strategy is useful for fully
exploiting the representational power of the first CNN layer
for modeling music, but note that similar reasonings could
also be useful for speech, audio or other MIR tasks. These
results provide an advance in: (i) gaining intuition towards
what CNNs learn, (ii) efficiently adapting deep learning for
MIR and (iii) designing networks at a lower cost.

5. ACKNOWLEDGMENTS

We are grateful for the GPUs donated by NVidia. This work
is partially supported by the Maria de Maeztu Units of Excel-
lence Programme (MDM-2015-0502).

2475



6. REFERENCES

[1] Keunwoo Choi, George Fazekas, and Mark Sandler,
“Automatic tagging using deep convolutional neural net-
works,” in 17th International Society for Music Infor-
mation Retrieval Conference (ISMIR), 2016.

[2] Huy Phan, Lars Hertel, Marco Maass, and Alfred
Mertins, “Robust audio event recognition with 1-max
pooling convolutional neural networks,” arXiv preprint
arXiv:1604.06338, 2016.

[3] Yoonchang Han, Jaehun Kim, and Kyogu Lee, “Deep
convolutional neural networks for predominant instru-
ment recognition in polyphonic music,” arXiv preprint
arXiv:1605.09507, 2016.

[4] Jordi Pons, Thomas Lidy, and Xavier Serra, “Experi-
menting with musically motivated convolutional neural
networks,” in 14th International Workshop on Content-
Based Multimedia Indexing (CBMI). IEEE, 2016.
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