
A COMPREHENSIVE STUDY OF DEEP BIDIRECTIONAL LSTM RNNS
FOR ACOUSTIC MODELING IN SPEECH RECOGNITION

Albert Zeyer, Patrick Doetsch, Paul Voigtlaender, Ralf Schlüter, Hermann Ney

Human Language Technology and Pattern Recognition, Computer Science Department,
RWTH Aachen University, 52062 Aachen, Germany

{zeyer, doetsch, voigtlaender, schlueter, ney}@cs.rwth-aachen.de

ABSTRACT

Recent experiments show that deep bidirectional long short-
term memory (BLSTM) recurrent neural network acoustic
models outperform feedforward neural networks for automatic
speech recognition (ASR). However, their training requires
a lot of tuning and experience. In this work, we provide a
comprehensive overview over various BLSTM training as-
pects and their interplay within ASR, which has been missing
so far in the literature. We investigate on different variants
of optimization methods, batching, truncated backpropaga-
tion, and regularization techniques such as dropout, and we
study the effect of size and depth, training models of up to
10 layers. This includes a comparison of computation times
vs. recognition performance. Furthermore, we introduce a
pretraining scheme for LSTMs with layer-wise construction of
the network showing good improvements especially for deep
networks. The experimental analysis mainly was performed on
the Quaero task, with additional results on Switchboard. The
best BLSTM model gave a relative improvement in word error
rate of over 15% compared to our best feed-forward baseline
on our Quaero 50h task. All experiments were done using RE-
TURNN and RASR, RWTH’s extensible training framework
for universal recurrent neural networks and ASR toolkit. The
training configuration files are publicly available.

Index Terms— acoustic modeling, LSTM, RNN

1. INTRODUCTION AND RELATED WORK
Deep neural networks (DNN) yield state-of-the-art perfor-
mance in classification in many machine learning tasks [1].
The class of recurrent neural networks (RNN) and especially
long short-term memory (LSTM) networks [2] perform very
well when dealing with sequence data like speech.

Only recently, it has been shown that LSTM based acoustic
models (AM) outperform FFNNs on large vocabulary continu-
ous speech recognition (LVCSR) [3, 4]. The training procedure
for LSTMs, esp. deep bidirectional LSTMs (BLSTM) takes
a lot of time and effort to tune, arguably more than for feed-
forward networks. There are many aspects to be considered
for training LSTMs which we are exploring in this work, such
as the network topology, sequence chunking and batch sizes,
optimization methods, regularization, and our experiments
show that there is a huge variance in recognition performance
depending on all the different aspects. What is missing, is
an overview over the effect and interdependencies of the var-
ious approaches. To the best of our knowledge, currently no
overview like this exists the literature, and this is presented in
this work. We try to fill this gap by a comprehensive study of

various aspects of training deep BLSTMs and we provide con-
figuration files for all our experiments [5] for our framework
RETURNN [6]. Compared to our best FFNN baseline, we
get a relative improvement in word error rate (WER) of over
15%. We train deep BLSTM networks with up to 10 layers for
acoustic modeling and we discovered that a pretraining scheme
with a layer-wise construction can improve performance for
deeper LSTMs. We are not aware of any previous work which
applied pretraining for LSTMs in ASR.

Hybrid RNN-HMM models were developed in 1994 in
[7]. An early work for bidirectional RNNs for TIMIT was pre-
sented in [8] and an early hybrid LSTM-HMM was presented
in [9] for TIMIT. [3, 4, 10, 11, 12, 13, 14, 15] investigate var-
ious bidirectional and unidirectional LSTM topologies with
optional projection in some cases combined with convolutional
or feed-forward layers for acoustic modeling in ASR. Vari-
ations of the LSTM model were studied in [16, 17, 18, 19],
although we only present the standard LSTM without peephole
in this work.

2. LSTM MODEL AND IMPLEMENTATION
We use the standard LSTM model without peephole con-
nections [20]. If not otherwise stated, we use bidirectional
LSTMs (BLSTM). Our base tool is the RASR speech recog-
nition toolkit [21, 22]. We use RASR for the feature extrac-
tion pipeline and for decoding. We extended RASR with a
Python bridge to allow many kinds of interactions with exter-
nal tools. This Python bridge was introduced to be able to use
RETURNN, our Theano-based framework [6, 23] to do the
training and forwarding in recognition of our acoustic model.
In RETURNN, we have multiple LSTM implementations and
it supports all the aspects which we discuss in this paper. One
particular LSTM implementation is supported by a custom
CUDA kernel which gives us great speed improvements. We
provide more details about this software in [6] and the config
files in [5].

3. COMPARISONS AND EXPERIMENTS
We use a subset of 50 hours from the Quaero Broadcast Con-
versational English Speech database train11. The development
eval10 and evaluation eval11 sets consist of about 3.5 hours
of speech each. The recognition is performed using a 4-gram
language model. Further details about the task can be found in
[24].

3.1. Baseline
We use the common NN-HMM hybrid acoustic model [25].
All acoustic models were trained frame-wise with the cross

2462978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

entropy criterion based on a fixed Viterbi alignment. We do not
investigate discriminative sequence training in this study. The
input features are 50-dimensional VTLN-normalized Gamma-
tone [26]. We don’t add any context window nor delta frames
for the LSTM because we expect that the LSTM automatically
learns to use the context. We use a Classification And Re-
gression Tree (CART) with 4501 labels. We also have special
residual phoneme types in our lexicon which are used in tran-
scription for unknown or unintelligible parts. We remove all
frames which are aligned to such phonemes according to our
fixed Viterbi alignment. This means that we have only 4498
output class labels in our softmax layer and in recognition, we
never hypothesize such phonemes.

Our FFNN baseline with 9x2000 layers and ReLU acti-
vation function with a context-window of 17 frames yields
15.3% WER on eval10 and 20.3% WER on eval11.

Our minibatch construction is similar to e. g. [10] and
described in detail in [6]. One minibatch consists of nchunks
number of chunks from one or more corpus segments. The
chunks are up to T frames long and we select them every tstep
frames from the corpus. Our common settings are T = 50,
tstep = 25, nchunks = 40, i. e. a minibatch size of 2000 frames.

Our learning rate is not normalized by
∑

i Ti or T · nchunks
so that the update step stays the same for every mini batch
independent from nchunks or T . Thus, in our case, the total
update scale per epoch stays the same independent from nchunks
or T . Only tstep will have an impact on the total update scale.

For all experiments, we train 30 epochs. We have a small
separate cross validation (CV) set where we measure the frame
error rate (FER) and the cross entropy (CE). With the model
from epochs 5, 10, 30, the epoch from the best CV FER, the
epoch from the best CV CE, we evaluate on eval10 and eval11.
In the results in our tables, we select the epoch of the best
WER on eval10. We also state the epoch. This can give a hint
about the convergence speed or whether we overfit later.

Despite the optimization method which might already pro-
vide some kind of implicit learning rate scheduling, we al-
ways also use another explicit learning rate scheduling method
which is often called Newbob [6]. We start with some given
initial learning rate and when the relative improvement on
the CV CE is less than 0.01 after an epoch, we multiply the
learning rate with 0.5 for the next epoch.

Our standard optimization method is most often Adam
[27] with an initial learning rate of 10−3. We use gradient
clipping of 10 by default.

3.2. Number of Layers
We did several experiments to figure out the optimal number
of layers. In theory, more layers should not hurt but in prac-
tice, they often do because the optimization problem becomes
harder. This could be overcome with clever initializations, skip
connections, highway network like structures [28, 15] or deep
residual learning [29]. We did some initial experiments also in
that direction but we were not successful so far. The existing
work in that direction is also mostly for deep FFNNs and not
for deep RNNs except for [15] which trains deep highway
BLSTMs up to 8 layers.

The results can be seen in Table 1. For this experiment,
the optimum is somewhere between 4 to 6 layers. In earlier
experiments, the optimum was at about 3 to 4 layers. It seems
the more we improve other hyperparameters, the deeper the
optimal network becomes. With pretraining as in Section 3.8,

we get our overall best result with 6 layers.
We also included the best CE value on the train dataset and

the CV dataset in Table 1. This gives a hint about the amount
of overfitting. We observe similar results as in [29], i. e. deeper
networks should in theory overfit even more but they do not
which is probably due to a harder optimization problem. It
also seems as if the CV CE optimum is slightly deeper than the
WER optimum. That indicates that sequence discriminative
training will further improve the results.

Table 1: Comparison of number of layers, layer size fixed to 500
for each forward and backward direction. Dropout 0.1 + L2, Adam,
nchunks = 40, WER on eval10, reported on the best epoch. Note
that the CE values are not necessarily from the same epoch as the
WER but they are the minimum from all epochs. Also, the train CE
is accumulated while training, i.e. with dropout applied.

#layers #params[M] WER[%] epoch train CE CV CE
1 6.7 17.6 30 1.72 1.64
2 12.7 14.6 16 1.25 1.39
3 18.7 14.0 30 1.17 1.32
4 24.7 13.5 15 1.16 1.29
5 30.7 13.6 30 1.17 1.28
6 36.7 13.5 30 1.22 1.28
7 42.7 13.8 30 1.24 1.28
8 48.7 14.2 19 1.29 1.31

3.3. Layer Size
In most experiments, we use a hidden layer size of 500 (i. e.
500 nodes / memory cells for each the forward and the back-
ward direction). In Table 2 we compare different layer sizes.
Note that the number of parameters increases quadratically.
We see that the optimum for this experiment is at about 600-
700 (for 3 layers with Adadelta at about 700), however a model
with size 500 is much smaller and not so much worse, so we
used that size for most other experiments.

We did not investigate projections in this work. With a
projection size of about 500, other groups report a layer size
of up to 2000 [3].

Table 2: Comparison of hidden layer size. 5 layers, dropout 0.1, L2

0.01, Adam, nchunks = 40. WER reported on eval10, reported for
the best epoch.

layer size #params[M] WER[%] epoch
500 30.7 13.6 30
600 43.1 13.5 30
700 57.6 13.5 18
800 74.1 13.6 30

3.4. Topology: Bidirectional vs. Unidirectional
Our original experiment showed that we get quite a huge WER
degradation with unidirectional LSTM networks compared to
BLSTMs, over 20% relative, 19.6% WER for unidirectional vs.
15.6% WER for bidirectional, see [30], although we did not
tune the unidirectional network as much. Other groups confirm
that bidirectional networks perform better than unidirectional
ones [8, 31].

This huge WER degradation led to further research where
we investigated how to use bidirectional RNNs/LSTMs on
a continuous input sequence to do online recognition. We
showed that this is possible and with some recognition delay,

2463

we can reach the original WER. These results are described in
[30].

3.5. Batching

We investigated the effect of different numbers of chunks
nchunks, window time steps tstep and window maximum size T ,
resulting in the overall batch size T · nchunks. All experiment
were done with the same initial learning rate. We did many
experiments with varying nchunks ∈ {20, . . . , 80} and got the
best results with nchunks ≈ 40. For some experiments the
performance difference was quite notable better with nchunks =
40 compared to nchunks = 20. This might be because of a better
variance and thus more stable gradient for each minibatch.
Note that a higher nchunks is usually also faster up to a certain
point because the GPU can work in parallel on every chunk.
We usually use T = 50. We did many experiments with fixed
T − tstep = 25 but we often see a slight degradation when
T ≥ 100. This might be due to the problem being harder to
train because of the longer backpropagation through time but
maybe we need to tune the learning rate or other parameters
more for longer chunks. Varying tstep did not make much
difference except that for smaller tstep, the training time per
epoch naturally becomes longer because we see some of the
data more often.

3.6. Optimization Methods

We compare many optimization methods and variations be-
tween hyperparameters and esp. also different initial learning
rates in Table 3. We compare stochastic gradient descent
(SGD), SGD with momentum [32, 33] where one variant only
depends on the last minibatch (mom) and another variant de-
pends on the full history (mom2), SGD with Nesterov momen-
tum [34, 33], mean-normalized SGD (MNSGD) [35], Adadelta
[36], Adagrad [37], Adam and Adamax [27], Adam without
the learning rate decay term, Nadam (Adam with incorporated
Nesterov momentum) [38], Adam with gradient noise [39],
Adam with MNSGD combined, RMSprop [40] and an RM-
Sprop inspired method called SMORMS3 [41]. We also tried
Adasecant [42] but it did not converge in any of our experi-
ments for this ASR task. We also test the effect of Newbob.
Note that we only use 3 layers, no L2 and a smaller nchunks,
which leads to worse results here compared to some other
sections.

One notable variant was also to use several model copies n
which we update independently and which we merge together
by averaging after some k minibatch updates (upd-mm-n-k).
We vary the amount of model copies and after how much
batches we merge. This is similar to the multi-GPU training
behavior described in [6]. This method yielded the best result
in these experiments but we postpone this for further research.

Overall, Adam was always a good choice. Standard SGD
comes close in some experiments but converges slower. New-
bob was also important. Note that Newbob also has some
hyperparameters and tuning those will likely yield further im-
provements.

We also investigated the effect of various different gradient
clipping variants and we settled with clipping the total gradient
for all parameters with a value of 10, which stabilized the
training in some cases, although if possible, no clipping yields
the best performance in many cases.

Table 3: Comparison of different optimization methods. 3 layers,
hidden layer size 500, dropout 0.1, nchunks = 20. WER5, WER10,
bWER and ep is the eval10 WER[%] of epoch 5, 10, best WER[%]
and the epoch of the best WER, respectively.

method lr details WER5 WER10 bWER ep
SGD 10−3 - 17.0 16.1 15.8 30

10−4 - 17.9 15.8 14.9 26
mom 0.9 17.4 15.9 14.8 28
mom2 0.9 16.7 16.3 15.9 19
mom2 0.5 17.2 16.0 15.0 30

Nesterov 0.9 16.9 16.1 15.8 16
0.5 · 10−4 - 19.7 17.1 15.4 30

mom2 0.9 16.8 15.5 15.0 30
10−5 - 32.1 22.3 18.6 30

then lr 10−4 18.7 16.2 15.0 30
MNSGD 10−4 avg 0.5 20.2 18.2 17.8 20

avg 0.995 19.1 16.8 16.4 18
RMSprop 10−3 mom 0.9 33.7 26.5 26.5 10

SMORMS3 10−3 - 16.4 16.0 15.7 23
10−3 mom 0.9 16.8 16.5 15.6 29

Adadelta 0.5 decay 0.90 20.2 15.7 15.3 13
decay 0.95 18.4 15.7 15.1 13
decay 0.99 model broken

0.1 decay 0.95 16.9 15.5 15.1 13
10−2 decay 0.95 24.4 20.1 17.4 29

Adagrad 10−2 - 16.9 16.0 15.6 29
10−3 - model broken

Adam 10−2 - model broken
10−3 - 16.3 15.4 14.8 30

no lr decay 16.1 15.0 14.6 11
Nadam 16.1 14.8 14.7 30

grad noise 0.3 16.2 15.0 14.6 16
upd-mm-2-2 15.8 14.9 14.5 18
upd-mm-3-2 15.8 14.5 14.3 30

Adamax 16.3 15.4 14.9 15
0.5 · 10−3 - 15.8 14.9 14.5 13
10−4 - 16.4 15.6 14.9 18

Adamax 21.0 18.6 16.6 30
MNSGD 16.5 15.7 14.9 18

no Newbob 16.4 15.6 15.2 21
10−5 no Newbob 30.7 24.3 19.2 30

3.7. Regularization Methods
For regularization, we tried both dropout [43] and standard
L2 regularization. The optimal dropout factor depends on
the hidden size and many other aspects, although we mostly
see the optimal WER with dropout 0.1, i. e. we drop 10% of
the activations and multiply by 10

9 . If we enlarge the hidden
layer size, we can use higher dropout values although in most
experiments, dropout 0.2 was worse than dropout 0.1.

Interestingly, the combination of both L2 and dropout gives
a big improvement and yields the best result. See Table 4.

3.8. Initialization and Pretraining
In all cases, we randomly initialize the parameters similar to
[44].

We investigated the same pretraining scheme as we do for
our FFNN where we start with one layer and add a layer after
each epoch right before the output layer [45]. In each pretrain
epoch, we can either train only the new layer (greedily) or the
full network, where full network training usually was better.

Results can be seen in Table 5. For deeper networks, this

2464

Table 4: We try different combinations of dropout and L2. 3 layers,
hidden size 500, nchunks = 40, Adam. WER on eval10.

dropout L2 WER[%] epoch
0 0 16.1 6

10−2 14.8 11
0.1 0 14.8 19

10−3 14.5 11
10−2 14.0 30
10−1 15.2 26

scheme seems to help more. This indicates that our initializa-
tion might have room for improvement. We got our overall best
result with such a pretraining scheme applied for a 6 layer bidi-
rectional LSTM and we note that esp. for the deeper networks,
the improvements by pretraining increases. We were not able
to train a 9 layer BLSTM without pretraining, it diverged and
broke after two epochs. Also, the training calculation time of
the first few epochs is shorter.

Table 5: Comparison of pretraining and no pretraining, compared
for different final number of layers, cf. Table 1.

#layers WER[%]
no pretrain pretrain

1 17.6 -
2 14.6 14.4
3 14.0 13.7
4 13.5 13.4
5 13.6 13.5
6 13.5 13.0
7 13.8 13.1
8 14.2 13.3
9 broken 13.3

10 - 13.3

3.9. Calculation Time vs. WER
We did over 300 different training experiments and collected
a lot of statistics about the calculation time in relation to the
WER.

Most experiments were done with a GeForce GTX 980.
We see that the Tesla K20c is about 1.38 times slower with
a standard deviation of 0.084, and the GeForce GTX 680 is
about 1.86 times slower with a standard deviation of 0.764. We
present the pure train epoch calculation times with a GeForce
GTX 980, not counting the CV test and other epoch prepara-
tion.

We collected some of the total times in Table 6. That is
the summed train epoch time until we reach the specific epoch.
We show the model with the best WER up to the specific
time. We see that in most cases, combinations of different
hyperparameters and methods yield the best results. Time
downsampling was a simple method to reduce the calculation
time with performance as trade-off.

4. EXPERIMENTS ON OTHER CORPORA
We use the 300h Switchboard-1 Release 2 (LDC97S62) corpus
for training and the Hub5’00 evaluation data (LDC2002S09)
is used for testing. We use a 4-gram language model which
was trained on the transcripts of the acoustic training data
(3M running words) and the transcripts of the Fisher English
corpora (LDC2004T19 & LDC2005T19) with 22M running

Table 6: Total times until we get to a certain eval10 WER in a certain
train epoch. If not specified, it’s a BLSTM.

time WER ep model
[%] size details

2:18h 20.0 5 1x500 dropout + L2

2:36h 17.2 5 3x300 dropout + time downsampling
3:40h 16.6 5 3x500 dropout
12:30h 15.3 20 9x2000 FFNN with relu
14:47h 13.9 13 3x500 dropout + L2

21:53h 13.6 17 4x500 dropout + L2 + pretraining
35:36h 13.2 18 5x500 dropout + L2 + grad noise
41:51h 13.0 23 6x500 dropout + L2 + pretraining

words. More details can be found in [46]. Results in Table 7
show the improvement by LSTMs and also with an associative
LSTM [47].

Table 7: Results on Switchboard. BLSTM models trained with
Nadam, gradient noise, dropout + L2. Additionally with an associa-
tive LSTM layer on top. Cf. Section 4.

model WER[%]
total SWB CH

FFNN 19.4 13.1 25.6
5l. BLSTM 17.1 11.9 22.3
6l. BLSTM 16.7 11.5 21.9

5l. BLSTM + assoc. BLSTM 16.3 11.1 21.6

We also did a few experiments on Babel Javanese full lan-
guage pack (IARPA-babel402b-v1.0b) which is a keyword-
search (KWS) task (see [48] for all details). The baseline
FFNN with 6 layers and 34M parameters yields a WER of
54.3% with CE-training and 53.3% with MPE-training. A 3
layer BLSTM with 19M parameters yields a WER of 52.8%
with CE-training (without MPE-training yet).

5. CONCLUSIONS
In this work we studied the effect of various LSTM hyperpa-
rameters. We demonstrated how to train deeper LSTM acoustic
models with up to 10 layers. Important for this achievement
was our introduction of pretraining for LSTMs which allows
for such depth and is especially relevant for the deeper net-
works. We showed that we can reproduce good results with
these findings on several different corpora and yield very good
overall results which beats our best FFNN on Quaero by over
15% relatively. Given our current experience, we think that
(N)Adam is always a good choice for optimization, some learn-
ing rate scheduling like Newbob is important, and pretraining
helps, esp. for deeper models. Dropout together with L2 regu-
larization works best but should not be too high, and gradient
noise often helps. First experiments with associative LSTMs
were promising.

6. ACKNOWLEDGEMENTS
We thank Zoltán Tüske for the baseline FFNN Switchboard experiment and
Pavel Golik for the Babel baseline experiment.

Partially supported by the Intelligence Advanced Research Projects Ac-
tivity (IARPA) via Department of Defense U.S. Army Research Laboratory
(DoD/ARL) contract no. W911NF-12-C-0012. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Disclaimer: The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoD/ARL, or the U.S. Government.

This research was partially supported by Ford Motor Company.

2465

7. REFERENCES
[1] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural Networks, vol. 61, pp. 85–117, 2015, Published online 2014;
based on TR arXiv:1404.7828 [cs.NE].

[2] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[3] Haşim Sak, Andrew Senior, and Françoise Beaufays, “Long short-
term memory based recurrent neural network architectures for large
vocabulary speech recognition,” arXiv preprint arXiv:1402.1128, 2014.

[4] Jürgen T Geiger, Zixing Zhang, Felix Weninger, Björn Schuller, and
Gerhard Rigoll, “Robust speech recognition using long short-term
memory recurrent neural networks for hybrid acoustic modelling,” in
INTERSPEECH, 2014, pp. 631–635.

[5] “GitHub repository with config files for LSTM ex-
periments in RETURNN,” https://github.com/
rwth-i6/returnn-experiments/tree/master/
2016-lstm-paper, 2016.

[6] Patrick Doetsch, Albert Zeyer, Paul Voigtlaender, Ilya Kulikov, Ralf
Schlüter, and Hermann Ney, “RETURNN: The RWTH extensible
training framework for universal recurrent neural networks,” arXiv
preprint arXiv:1608.00895, submitted to IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP) 2016, 2016.

[7] Anthony J Robinson, “An application of recurrent nets to phone proba-
bility estimation,” Neural Networks, IEEE Transactions on, vol. 5, no.
2, pp. 298–305, 1994.

[8] Mike Schuster and Kuldip K Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[9] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed, “Hybrid
speech recognition with deep bidirectional LSTM,” in Automatic Speech
Recognition and Understanding (ASRU), 2013 IEEE Workshop on. IEEE,
2013, pp. 273–278.

[10] Xiangang Li and Xihong Wu, “Constructing long short-term memory
based deep recurrent neural networks for large vocabulary speech recog-
nition,” in Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on. IEEE, 2015, pp. 4520–4524.

[11] Xiangang Li and Xihong Wu, “Improving long short-term memory
networks using maxout units for large vocabulary speech recognition,”
in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE Inter-
national Conference on. IEEE, 2015, pp. 4600–4604.

[12] Tara N Sainath, Oriol Vinyals, Andrew Senior, and Hasim Sak, “Convo-
lutional, long short-term memory, fully connected deep neural networks,”
in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE Inter-
national Conference on. IEEE, 2015, pp. 4580–4584.

[13] William Chan and Ian Lane, “Deep recurrent neural networks for
acoustic modelling,” arXiv preprint arXiv:1504.01482, 2015.

[14] Andrew Senior, Hasim Sak, and Izhak Shafran, “Context dependent
phone models for LSTM RNN acoustic modelling,” in Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Conference
on. IEEE, 2015, pp. 4585–4589.

[15] Yu Zhang, Guoguo Chen, Dong Yu, Kaisheng Yao, Sanjeev Khudanpur,
and James Glass, “Highway long short-term memory RNNs for distant
speech recognition,” arXiv preprint arXiv:1510.08983, 2015.

[16] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Ben-
gio, “Empirical evaluation of gated recurrent neural networks on se-
quence modeling,” CoRR, vol. abs/1412.3555, 2014.

[17] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever, “An empirical
exploration of recurrent network architectures,” in Proceedings of the
32nd International Conference on Machine Learning (ICML-15), 2015,
pp. 2342–2350.

[18] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R Steunebrink,
and Jürgen Schmidhuber, “LSTM: A search space odyssey,” arXiv
preprint arXiv:1503.04069, 2015.

[19] Thomas M Breuel, “Benchmarking of LSTM networks,” arXiv preprint
arXiv:1508.02774, 2015.

[20] Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber, “Learning
precise timing with LSTM recurrent networks,” The Journal of Machine
Learning Research, vol. 3, pp. 115–143, 2003.

[21] David Rybach, Stefan Hahn, Patrick Lehnen, David Nolden, Martin Sun-
dermeyer, Zoltan Tüske, Simon Wiesler, Ralf Schlüter, and Hermann
Ney, “RASR - the RWTH Aachen university open source speech recogni-
tion toolkit,” in IEEE Automatic Speech Recognition and Understanding
Workshop, Waikoloa, HI, USA, Dec. 2011.

[22] Simon Wiesler, Alexander Richard, Pavel Golik, Ralf Schlüter, and
Hermann Ney, “RASR/NN: The RWTH neural network toolkit for
speech recognition,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing, Florence, Italy, May 2014, pp. 3313–
3317.

[23] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J.
Goodfellow, Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio,
“Theano: new features and speed improvements,” Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

[24] Markus Nußbaum-Thom, Simon Wiesler, Martin Sundermeyer, Chris-
tian Plahl, Stefan Hahn, Ralf Schlüter, and Hermann Ney, “The RWTH
2009 Quaero ASR evaluation system for English and German,” in
Interspeech, Makuhari, Japan, Sept. 2010, pp. 1517–1520.

[25] Hervé Bourlard and Nelson Morgan, Connectionist speech recognition:
a hybrid approach, vol. 247, Springer, 1994.

[26] Ralf Schlüter, L Bezrukov, Hannes Wagner, and Hermann Ney, “Gam-
matone features and feature combination for large vocabulary speech
recognition,” in Acoustics, Speech and Signal Processing, 2007. ICASSP
2007. IEEE International Conference on. IEEE, 2007, vol. 4, pp. IV–
649.

[27] Diederik Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[28] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber, “Training
very deep networks,” in Advances in Neural Information Processing
Systems, 2015, pp. 2368–2376.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep resid-
ual learning for image recognition,” arXiv preprint arXiv:1512.03385,
2015.

[30] Albert Zeyer, Ralf Schlüter, and Hermann Ney, “Towards online-
recognition with deep bidirectional LSTM acoustic models,” in In-
terspeech, 2016.

[31] Alex Graves and Jürgen Schmidhuber, “Framewise phoneme classifi-
cation with bidirectional lstm and other neural network architectures,”
Neural Networks, vol. 18, no. 5, pp. 602–610, 2005.

[32] Boris T Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, 1964.

[33] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton, “On
the importance of initialization and momentum in deep learning,” in
Proceedings of the 30th international conference on machine learning
(ICML-13), 2013, pp. 1139–1147.

[34] Yurii Nesterov, “A method of solving a convex programming problem
with convergence rate O(1/k2),” in Soviet Mathematics Doklady, 1983,
vol. 27, pp. 372–376.

[35] Simon Wiesler, Alexander Richard, Ralf Schlüter, and Hermann Ney,
“Mean-normalized stochastic gradient for large-scale deep learning,”
in IEEE International Conference on Acoustics, Speech, and Signal
Processing, Florence, Italy, May 2014, pp. 180–184.

[36] Matthew D Zeiler, “Adadelta: An adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[37] John Duchi, Elad Hazan, and Yoram Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,” The Journal
of Machine Learning Research, vol. 12, pp. 2121–2159, 2011.

[38] Timothy Dozat, “Incorporating Nesterov momentum into Adam,” Tech.
Rep., Stanford University, 2015, http://cs229.stanford.edu/
proj2015/054_report.pdf.

[39] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach,
and J. Martens, “Adding gradient noise improves learning for very deep
networks,” ArXiv preprint arXiv:1511.06807, Nov. 2015.

[40] Tijmen Tieleman and Geoffrey Hinton, “Lecture 6.5 - RMSprop: Divide
the gradient by a running average of its recent magnitude.,” COURSERA:
Neural Networks for Machine Learning, 2012.

[41] Simon Funk, “RMSprop loses to SMORMS3 - beware the ep-
silon!,” http://sifter.org/˜simon/journal/20150420.
html, 2015.

[42] Caglar Gulcehre, Marcin Moczulski, and Yoshua Bengio, “Adasecant:
robust adaptive secant method for stochastic gradient,” arXiv preprint
arXiv:1412.7419, 2014.

[43] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R Salakhutdinov, “Improving neural networks by preventing
co-adaptation of feature detectors,” arXiv preprint arXiv:1207.0580,
2012.

[44] Xavier Glorot and Yoshua Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in International Conference
on Artificial Intelligence and Statistics, 2010, pp. 249–256.

[45] Frank Seide, Gang Li, Xie Chen, and Dong Yu, “Feature engineering
in context-dependent deep neural networks for conversational speech
transcription,” in Automatic Speech Recognition and Understanding
(ASRU), 2011 IEEE Workshop on. IEEE, 2011, pp. 24–29.

[46] Zoltán Tüske, Pavel Golik, Ralf Schlüter, and Hermann Ney, “Speaker
adaptive joint training of gaussian mixture models and bottleneck fea-
tures,” in IEEE Automatic Speech Recognition and Understanding
Workshop, Scottsdale, AZ, USA, Dec. 2015, pp. 596–603.

[47] Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalchbrenner, and
Alex Graves, “Associative long short-term memory,” arXiv preprint
arXiv:1602.03032, 2016.

[48] Pavel Golik, Zoltán Tüske, Ralf Schlüter, and Hermann Ney, “Multilin-
gual features based keyword search for very low-resource languages,”
in Interspeech, Dresden, Germany, Sept. 2015, pp. 1260–1264.

2466

