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ABSTRACT

This paper proposes a new event detection algorithm for the
use in Non-Intrusive Load Monitoring (NILM). This latter is
a field where the main concern is to break down, in a non-
intrusive manner, the global electrical energy consumption
into individual appliances consumption. Detecting events is
thus of importance for appliance clustering in event-based
NILM systems. A simple and fast algorithm that detects the
variations of the signal’s envelope is proposed in this paper.
Its main advantage is the high localization accuracy of the
start times of events. Its performance is evaluated using simu-
lated and real data and is compared to one of the recently pro-
posed algorithms in the field. Simulations show that the pro-
posed detection algorithm gives 100 % precision and 97.13 %
recall at a Signal-to-Noise Ratio (SNR) of 50 dB.

Index Terms— Event detection, energy disaggregation,
event-based NILM, Non-Intrusive Load Monitoring (NILM),
unsupervised NILM

1. INTRODUCTION

Non-Intrusive Load Monitoring (NILM), or energy disaggre-
gation, is a field that appeared in the late 1980s with the work
of Hart [1]. Nevertheless, it was not until recently that it
started to know a rapidly growing interest. The main objective
of a NILM system is to break down the total energy consump-
tion into its different end-use parts (e.g. individual appliance
consumption).

There are different approaches to solve the NILM prob-
lem and they can be classified in different ways. We have,
for example, supervised vs. unsupervised approaches. Su-
pervised approaches need a training or learning so that the
system can learn the appliances it is supposed to measure be-
fore deployment for real use which adds more complexity to
them. Unsupervised methods, on the contrary, are free from
this constraint but are more prone to errors related to environ-
ment variability. A review for NILM approaches, in general,
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can be found in [2, 3, 4] and unsupervised approaches, in par-
ticular, in [5].

From the sampling frequency point of view, NILM ap-
proaches can be classified in Low Sampling Frequency (LSF)
(1 Hz or less) or High Sampling Frequency (HSF) (hundreds
of Hz to MHz) approaches. Due to the fact that data and
datasets are more easily available in LSF, LSF-NILM is more
widespread. Another dichotomy of the field is event-based
vs. non event-based NILM depending on whether they rely
on detecting and classifiying transitions or not [6, 7].

In event-based approaches the following stages are usu-
ally found: event detection, feature extraction, appliance clus-
tering and energy consumption estimation. The event detec-
tion stage is particularly important since it is situated in the
upstream of the NILM system. Most of the works on event-
based approaches use the real and reactive power as input to
the detection stage [8, 9]. But few others use other inputs as
voltage distorsion [10] or current signal [11].

Our approach is an event-based unsupervised one that
uses the HSF current signal as input to the event detection
stage. In this paper, we only focus on the latter and discuss
its performance in comparison to another recently proposed
detector in the field. The intuition behind the proposed event
detector is to improve the detection accuracy by avoiding
the use of any kind of averaging (e.g. power computation),
filtering, or transformation (e.g. FFT), etc. that may cause a
loss of precious time-related information.

The novelty of the proposed algorithm with respect to the
state of the art in the field is, mainly, its detection accuracy.
To the best of our knowledge, our algorithm is the first one to
provide such accuracy for a NILM event detection and more-
over with low complexity and fast computation.

This paper is organized as follows: section 2 presents the
proposed event detection algorithm. Section 3 presents and
discusses the obtained evaluation results for the detector and
section 4 gives concluding remarks and few perspectives.

2. EVENT DETECTION ALGORITHM

In this section we present the proposed algorithm, called here-
after High Accuracy NILM Detector (HAND), for the event
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detection. An event, or active section, corresponds to the part
of the signal that deviates from the previous steady state and
lasts as long as no steady state has been reached [11]. The
proposed algorithm is simple and fast. It tracks the variation
of the standard deviation (std) σd(t) of the detected envelope
ed(t) of the current signal using a moving window. Then, a
threshold separates the events characterized by high ampli-
tude variation (high σd(t) values) from the steady states char-
acterized by low amplitude variation (very low σd(t) values).
The algorithm outputs the starting and stopping times of the
detected events. The algorithm is as follows (with some steps
detailed after):

1. Detect current signal envelope ed(t).

2. Fix the moving window size L (for our simulations we
chose L ≡ 4 time-cycles [samples]).

3. Initialize σd(tk), for k = 1, . . . , L, with the standard
deviation of ed(t), t = t1, . . . , tL.

4. Compute iteratively the mean µd(tk) and the unbiased
standard deviation σd(tk) of ed(t), k = L+ 1, . . . , N ,
using:

µd(tk) = µd(tk−1) + 1
L [ed(tk)− ed(tk−L)]

σ2
d(tk) = σ2

d(tk−1) + 1
L−1

[
e2d(tk)− e2d(tk−L)

]
+ L

L−1

[
µ2
d(tk−1)− µ2

d(tk)
] .

(1)

5. Choose detection threshold value γ (for our simulations
we chose γ = 0.1) and find the starting and stopping
times for each event such that:

• start time ts is defined as the first point of an event

where σd(t) > γ and
dσd(t)

dt
> 0.

• end time te is defined as the last point of an event

where σd(t) > γ and
dσd(t)

dt
< 0.

6. Post-processing:

• event approval: only if
∑

t σd(t) > δ, t ∈ [ts, te].

• window delay correction: te = te − L.

To detect the current signal envelope (step 1) we use an ad-hoc
method. We detect the peak value on each time-cycle (20 ms
for a 50 Hz power line frequency) of the current signal and
interpolate between all the detected peaks (cubic interpola-
tion). This interpolation causes the smoothing of current sig-
nal abrupt changes at the beginning of an event (see ed1(t) in
Fig. 1). To overcome this, we propose to test the median of the
absolute value of the current signal xpk,pk+1

(t) situated be-
tween each consecutively detected peaks pk and pk+1 with a
threshold α (empirically fixed). If median(|xpk,pk+1

(t)|) < α
then for this part ed(t) = xpk,pk+1

(t), otherwise the previ-
ously detected envelope is kept. This additional test allows
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Fig. 1. Improvement of the envelope detection on a cur-
rent signal turn-on event: ed1(t) is detected without median
thresholding and ed2(t) with median thresholding.

Fig. 2. Illustration of the computation “principle” of σd(t)
using a moving window of size L. Note that concretely this is
done equivalently in an iterative manner.

the envelope to better follow the variations of the current sig-
nal, especially when the previous steady state time-cycle has
low amplitude or contains a portion of the starting event (see
ed2(t) in Fig. 1).

After detecting ed(t), we compute its moving std σd(t),
i.e. the detector’s feature (steps 2 to 4) (see Fig. 2). This
is done iteratively to improve the computation speed. After
that, we fix a threshold γ (step 5) to define the start time ts
and end time te for each event. Since our feature is the std
of the current signal’s envelope, fixing γ is guided by the std
value that corresponds to noise variance (for example if the
noise std = 80 mAmps, γ = 0.08 corresponds to consider-
ing all signal sections with variance above noise variance as
events). Hence, this simplifies the parameter selection for the
proposed algorithm.

The post-processing (step 6) corrects, mainly, for two
things: (1) signal sections barely exceeding threshold γ (event
approval) and (2) the time-delay (window delay correction)
that appears in the stop time, te, detection due to the moving
window using the previous L − 1 data points to compute the
present point std (see Fig. 2). Note here that the threshold
δ used for event approval is fixed empirically and that no
correction is needed for start time ts.
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3. EXPERIMENTAL RESULTS

To test the HAND, we propose to use simulated and real
data and to compare the results with the ones obtained using
the recently proposed Kernel Fisher Discriminant Analysis
(KFDA)-based algorithm [11] (called loosely KFDA here-
after). This algorithm uses current harmonics Ik as features,
estimated using IQ-demodulation technique, and the kernel-
ized Fisher linear discriminant function [12] as a classifier
to distinguish between the “event” and the “steady state”
classes. It computes a test statistic and compares it to an
adaptive threshold.

For reliable results, the used data for the test has to be pro-
vided with accurate ground truth time instants for the events’
occurrences. It is important to keep in mind that the turn-on
event of an appliance is considered as one event that has a start
and end times and the turn-off event of an appliance is con-
sidered as another event having also its start and end times.
This means that it is the start times of the events we can know
with precision since they correspond to their triggering (for
example, turning on or off an appliance). The stop time of the
turn-on event of an appliance is not precisely defined! Hence,
for the test, we will be comparing ground truth start times of
events with the detected ones.

3.1. Simulated data tests

For simulations we use the current signal model proposed
in [13], with stationary parameters, i.e. s(t) = (A0e

pTt +

1)
d∑

i=1

Ai cos(2πfit+ φi) where A0 is a scalar and p =

[p1, . . . , pn]
T is a vector of n polynomial coefficients such

that pTt is a nth degree polynomial, with time vector t =
[t, . . . , tn]

T . Ai, fi and φi are, respectively, the amplitudes,
frequencies and phases of d sinusoids. The simulation sig-
nal x(t) is the sum of K different delayed versions of s(t)
plus noise: x(t) =

∑K
1 sk(t, τk, Dk) + w(t), t = 0, . . . , D.

The noise is white Gaussian with zero-mean and variance
σ2
w. τk and Dk are, respectively, time delays and durations.

The versions of s(t) are randomly generated and the cho-
sen parameters for the simulation are as follows (U(a, b): is
the uniform distribution on interval (a, b)): A0 = 1, n =
1, d = 5, f = [50, 150, 250, 350, 450]T , τk = U(0, D), Dk =
U(1, 10), p1 = U(−10, 0), Ai = U(0, 5), φi = U(0, π). The
sampling frequency Fs =10 kHz and K = 4000, but after
removing versions with end time exceeding total signal du-
ration D = 2000 minutes, we ended up having less (around
3800 versions ≡ 7600 events for each simulation).

As evaluation criteria we use the following measures:
True Positives (TP), False Negatives (FN), False Positives
(FP), precision and recall as suggested by different works in
the field [14, 15]. The precision and recall are defined as:
precision = TP/(TP+FP), recall = TP/(TP+FN).

Along with these measures, we also define a delay toler-

Table 1. TP, FN, FP, precision and recall of HAND vs.
KFDA, SNR = 50 dB, ∆t = 200 ms

TP FN FP precision recall
HAND 7417 253 0 100.00% 96.70%
KFDA 1517 6153 5269 22.35% 19.78%

ance ∆t such that for a detected event with start time ts to be
considered as a true positive, the condition |ts − tt| ≤ ∆t,
where tt is the ground truth time instant, must be verified. A
false positive is, then, defined as a detected event that violates
this condition. This way, this tolerance delay is a quantity that
defines the required accuracy of the detector to perform well.

In the following we compare the two algorithms for accu-
racy (varying ∆t) and sensitivity to noise (varying SNR).

3.1.1. Accuracy comparison

To test the performance of the compared algorithms with re-
spect to a required accuracy, we fix the SNR at 50 dB and con-
sider two ∆t values: 200 ms and 500 ms. Table 1 and the first
row (50 dB) of Table 2 give the results. These indicate that the
HAND satisfies the required accuracies and gives remarkably
perfect precision (100%). KFDA, on the other hand, performs
well (precision/recall = 98.19/86.20%) for ∆t = 500 ms but
has very poor performance for the required accuracy of ∆t =
200 ms. The best achievable accuracy depends on the SNR
and the parameter choice for each of the algorithms and its
study is out of the scope of this paper but we expect that the
HAND is able to satisfy at least ∆t = 50 ms at SNR = 50 dB.

The approach of KFDA is attractive but what makes it
loose in accuracy is mainly its reliance on a low-pass filter
in the IQ-demodulation stage that adds filter artifacts around
abrupt changes and an averaging, that deteriorates the accu-
racy, is then necessary to solve for that.

3.1.2. Sensitivity to noise

Following the results of the previous sub-section, we fix ∆t
= 500 ms to not penalize KFDA and we vary the SNR (see
Table 2). The results show that KFDA is particularly robust
against noise (precision and recall have around the same value
for a decrease of 20 dB (from 50 to 30 dB) in the SNR, around
an average of 98.23 % and 86.83 %, respectively, for precision
and recall) whereas the precision of the HAND is sensitive to
noise (decreases from 100 % to almost 95 % for a SNR de-
crease of 20 dB), which is to be expected. Since the detector’s
feature is the standard deviation of the envelope, as the SNR
gets lower more FP might be present. On the other hand, the
recall of the HAND is not affected (stays at around 97.35 %)
and is high which is an advantage for the HAND compared
to KFDA. A good recall means that misses do not occur often
and this is desirable in a NILM system since, if possible, we
do not wish to miss any true event. Having FP is not desirable
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Table 2. TP, FN, FP, precision and recall of HAND vs.
KFDA, ∆t = 500 ms, different SNRs

SNR Algo. TP FN FP prec.(%) rec.(%)

50 dB
HAND 7399 219 0 100.00 97.13
KFDA 6567 1051 121 98.19 86.20

40 dB
HAND 7432 202 15 99.80 97.35
KFDA 6695 939 123 98.20 87.70

30 dB
HAND 7490 186 399 94.94 97.58
KFDA 6801 875 117 98.31 86.60
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Fig. 3. KFDA results on real data. Top: Red peaks indi-
cate ground truth start times and detected events are framed
in boxes.

either but is less disadvantageous than having misses because
these FP can be dealt with in the clustering stage, for exam-
ple, by affecting them to an “unknown” class instead of an
“appliance” class.

Finally, note that HAND is at least three times faster than
KFDA due to both its low complexity and fast computation.

3.2. Real data test

Here we show a detection example on real data obtained us-
ing the measurement system presented in [16]. This system
allows the creation of consumption scenarios with the advan-
tage of providing a high precision control over the turn-on and
off of appliances. The measured signal is sampled at 100 kHz
and contains five events (4 turn-on and 1 turn-off: (1) turn-
on of the electronic part of a vacuum cleaner, (2) turn-on of
the motor of the same vacuum cleaner, (3) turn-on of a drill,
(4) turn-on of a halogen lamp, (5) turn-off of the drill). The
detection results are shown in Fig. 3 and 4 and the start time
detection errors are given in Table 3.

The average detection error over these five events is
9.94 ms (around half a time-cycle) for HAND and 87.25 ms
for KFDA. Also KFDA missed the 3rd event merged with the
2nd. This shows on a simple example how accurate is HAND
compared to KFDA.

It is important to accurately detect events since this will
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Fig. 4. HAND results on real data. Top: Red peaks indi-
cate ground truth start times and detected events are framed
in boxes.

Table 3. Error in start time detection for the five events
showed in Fig. 3 and 4.

HAND KFDA
Event 1 6.7 ms 99 ms
Event 2 24 ms 180 ms
Event 3 4.8 ms merged with event 2
Event 4 11.1 ms 60 ms
Event 5 3.1 ms 10 ms
Average 9.94 ms 87.25 ms

automatically affect the energy consumption estimation (esti-
mated using consumption part duration, itself estimated from
event times). Moreover, from a classification system perspec-
tive, an event detection stage with low accuracy may affect
the result of the parameter estimation and hence the feature
extraction stage that aims to extract relevant and unique fea-
tures for use in appliance clustering.

4. CONCLUSION

A new event detector for event-based NILM systems was
proposed. It is simple due to the use of the standard de-
viation of the current signal’s detected envelope as feature.
The algorithm is also fast since it computes its features itera-
tively. Moreover, the choice of the detection threshold value
is guided by the noise level in the measured signal which is
a big help. The results show that the proposed algorithm is
more accurate than the KFDA-based one [11] for a delay tol-
erance ≤ 200 ms (at 50 dB SNR) and has a higher recall but
it’s precision is sensitive to noise whereas the KFDA-based
algorithm is very robust against noise.

For future work, we are considering the adaptation of the
thresholding to the SNR in order to alleviate the noise sensi-
tivity of HAND. We also plan to test the detector on more real
data after creating a dataset of controlled scenarios using the
measurement system presented in [16].
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