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Abstract—Learning-based sensing policies for multi-band flex-
ible spectrum use, in particular cognitive radios operating in
non-stationary radio environments are proposed. The proposed
policies stem from the stochastic non-stationary restless multi-
armed bandit formulation of opportunistic spectrum access. The
non-stationary radio environment assumed in this paper is an
appropriate model for a realistic cognitive radio systems, where
the obtainable data rates depend on many unknown time-varying
factors. These are e.g. mobility, fading and primary user activity.
The developed policies are index policies, where the index of a
frequency band depends on the discounted average reward of the
band and a recency-based exploration bonus. The exploration
bonus encourages sensing frequency bands that have not been
explored for a long time. However, there is a maximum number
of time instances when any band can remain unexplored. These
index policies are computationally simple making them attractive
for mobile cognitive radios. In our simulation examples, we
demonstrate that the proposed policies can often provide higher
cumulative data rate than other existing state-of-the-art policies.

Index Terms—Flexible spectrum use, cognitive radio, oppor-
tunistic spectrum access, multi-armed bandit, dynamic propaga-
tion environment

I. INTRODUCTION

Flexible spectrum use and cognitive radios (CRs) address
the important problem of radio spectrum scarcity. The apparent
lack of usable spectrum is in fact caused by rigid allocation
and regulation policies instead of spectrum being fully in use.
Radio spectrum is a time-frequency-location varying resource
and the current regulation policies do not exploit that property.
In CR, secondary users (SUs) are allowed to access licensed
spectrum provided that the interference caused to primary
users (PUs) is negligible. In order to identify such spec-
trum opportunities, the SUs need to sense the spectrum. The
spectrum of interest may consist of multiple non-contiguous
frequency bands, which the SUs may need to sense one at a
time. Selecting the frequency band to be sensed is the task
of a spectrum sensing policy, that is the scope of this paper.
The SUs would like the sensing policy to select bands that are
expected to consistently produce high data rate. However, the
expected data rate from a given band depends on a number
of unknown factors associated with channel quality including
fading, path loss and interference as well as PUs activity.

In this paper, we develop reinforcement learning based
methods for online learning of the optimal frequency bands for
secondary use based on the past spectrum sensing results by
an SU. A particularly suitable formulation for this problem is

the restless multi armed bandit (RMAB) problem [1], [2], [3],
[4]. In the RMAB formulation frequency bands are seen as slot
machines that produce random rewards when played. For the
CR these rewards come in the form of data rate or throughput.
The expected rewards from the machines are unknown to
a player whose task is to maximize the overall cumulative
reward. Commonly the reward statistics are assumed to be sta-
tionary [1], [2], [3], [4], which may not be a valid assumption
in practice. Motivated by more realistic CR scenarios where
the statistics of the data rates may be volatile due to mobility,
fading, and hourly/daily/weekly variations in the PU networks
traffic load, the rewards in this paper are non-stationary. Using
the non-stationary bandit problem formulation we propose two
recency based index policies, that are based on the idea of
promoting sensing such frequency bands that have not been
sensed for a long time. The policies in this paper extend our
earlier work in [4] where stationary rewards were assumed.
The non-stationary model considered in this paper is more
practical than the one in [4], since in reality the state of
the radio spectrum and wireless channel conditions are non-
stationary. The main difference in the policies proposed in this
paper and the ones in [4] is the use of a discounted average
reward estimate and a recency-based exploration bonus that
allows regulating the maximum time for any frequency band
to remain unexplored.

The structure of this paper is as follows. Section II describes
the system model and the mathematical problem formulation.
Section III gives a short literature review of non-stationary
bandit problems. The proposed recency-based sensing policies
for non-stationary environments are presented in Section IV.
Simulation results of the proposed policy and other state-of-
the art policies from the literature are presented in Section
V. Concluding remarks and discussion on future research
directions are given in Section VI.

II. THE SYSTEM MODEL

We assume a multi-band CR where one or multiple SUs
are sensing K frequency bands in the hope of identifying
spectrum opportunities. If at time n an SU senses band k and
decides to access it, the SU obtains a random bounded data rate
with an unknown expected value µk(n). The obtained average
data rate from a given frequency band depends on bandwidth,
channel quality as well as the spectrum usage patterns of the
PU, for example. The data rates are non-stationary, i.e., the
µk(n)’s may change over time. We call a bandit problem
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piece-wise stationary, if the expected data rates may change
only at abrupt and unknown change points.

The performance of a policy π solving a non-stationary
bandit problem can be measured by its regret. Regret is defined
as the expected difference between the total achieved reward
by a learning policy and the total reward achieved by the
optimal genie aided policy that always chooses the optimal
band. In this sense, regret can be seen as a measure for the
cost of learning. By denoting the expected rate of band k at
time n as µk(n), the regret of a policy π over time horizon
T may be expressed as [5]

Rπ(T ) = E
⎡
⎢
⎢
⎢
⎢
⎢
⎣

T

∑

n=1
∑

k∶µk(n)<µk∗n(n)
(µk∗n(n) − µk(n))1{kπn=k}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where k∗n denotes the index of the band with the highest
average reward at time instant n, indicator function 1u obtains
value 1 if u is true and otherwise 0, and kπn denotes the index
of the band chosen by policy π at time instant n.

III. RELATED WORK

In the following we briefly describe other state-of-the-art
policies used for comparison in the simulation examples. In [5]
the piecewise stationary bandit problem, with known number
of abrupt changes in the reward statistics during a fixed time
horizon T was analysed. It was shown that for any policy
and a known the number of change points, the achievable
average regret is at least of order O(

√

T ). Since typically the
movements of wireless terminals are not known beforehand,
assuming the number of change points to be known a priori
is often not well justified.

a) Upper confidence bound based exploration: Policies
for non-stationary bandit problens using upper confidence
bounds (UCBs) have been proposed in [6], [5], [7]. In [6]
a discounted UCB (D-UCB) policy was proposed. In [5] it
was shown that the D-UCB achieves sublinear regret when the
number of change points is known. In [5] a sliding window
UCB (SW-UCB) policy was proposed and shown to achieve
sublinear regret with known number of change points.

b) Randomized exploration: Perhaps the simplest policy
suitable for non-stationary bandit problems is the ε-greedy
policy [8]. The ε-greedy policy selects a (uniformly) random
band with probability ε, while with probability 1−ε the policy
selects the band with the highest empirical discounted mean
reward. Since for any band the minimum probability of being
sensed is fixed, the regret of the ε-greedy policy is linear.

In adversarial bandit problems [9] no statistical assumptions
are made about the rewards. This makes some of the adversar-
ial policies also applicable to non-stationary settings. In [10]
it was shown, that the randomised EXP3.S policy [9] achieves
sublinear regret in non-stationary bandit problems that is of the
same order as the regret of D-UCB and SW-UCB. However,
sublinear regret is achieved with optimal parameter tuning, that
requires the number of change points to be known in advance.

c) Meta-bandits and change point detection: In [11],
[12], [13] and [14] meta-bandit policies were proposed for

non-stationary bandit problems. The core idea in meta-bandit
policies is to use stationary bandit policies together with
change point detection schemes that identify time instances
when the average rewards have changed.

IV. PROPOSED RECENCY-BASED EXPLORATION POLICIES

In this paper we propose two recency-based index policies
for non-stationary scenarios. These policies extend our earlier
work [4] to cases where the state of the radio spectrum
and consequently the rewards are non-stationary. In order to
understand the policies proposed in this paper, we need to
describe the policy for stationary scenarios first. The recency-
based exploration (RBE) policy in [4] senses first each band
once, after which the band with the highest index is always
selected. The index of channel k at time n is defined as

I(n) = x̄k(n) + g(n/τk(n)), (1)

where x̄k(n) denotes the average observed reward from band
k, τk(n) the time instant when band k was sensed last time
and g(n/τk(n)) the exploration bonus. The exploration bonus
g(n/τk(n)) is an increasing, concave and unbounded function
when τk(n) < n, and g(n/τk(n)) = 0 when τk(n) = n. An
example of such function would be

g(n/τk(n)) =
√

log(n/τk(n)).

The idea of the exploration bonus is to promote sensing bands
that have not been sensed for a long time, however, such
that asymptotically the suboptimal bands will be sensed at
an exponentially decreases rate. As the time interval between
two consecutive sensings of a suboptimal band grows expo-
nentially, the regret of the policy grows logarithmically.

In this paper, we extend the RBE policy of [4] for sce-
narios where the rewards are non-stationary. We call the first
proposed policy in this paper the non-stationary RBE (NRBE).
In a non-stationary setting, there are two technical problems
that need to be addressed. Firstly, the reward statistics are time-
varying and need to be tracked. This is achieved by replacing
the sample averages employed to estimate the expectations by
discounted averages. In particular, we employ the discounted
average reward x̄γk(n) computed as

x̄γk(n) =
∑
n
t=1 γ

n−txk(t)1{kπt =k}
∑
n
t=1 γ

n−t1{kπt =k}
, (2)

where 0 < γ < 1 denotes the discounting factor, xk(t) is the
observed reward from band k at time instant t and kπn denotes
the index of the band chosen by policy π at time instant n. The
indicator function 1u obtains value 1 if u is true and otherwise
0. Typically 0.9 ≤ γ < 1. The discounting factor γ decreases
the weight of the past observations at an exponential rate, so
that changes in the mean rewards can be tracked.

Secondly, for the non-stationary problem the exploration
bonus needs to be modified such that it guarantees exploration
every once in a while. To this end, we notice that the
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Initialization:
● Sense each band once.

Loop: n =K + 1,K + 2, ...

● Sense band k that maximizes

Ik(n) = x̄γk(n) + g (
ñ

ñ − δk(n)
) .

Fig. 1. The proposed NRBE policy. Variable x̄γ
k
(n) is the discounted average

reward up to time n at band k and g(⋅) is the exploration bonus.

Initialization:
● Sense each band once.

Loop: n =K + 1,K + 2, ...

● Sense band k that maximizes

Ik(n) = x̄Wk (n) + g (
min(n,W )

min(n,W ) − δk(n)
) .

Fig. 2. The proposed WRBE policy. Variable x̄Wk (n) is the sample average
of the last W rewards at time n at band k and g(⋅) the exploration bonus.

exploration bonus in (1) can be expressed as

g (
n

τk(n)
) = g (

n

n − δk(n)
) ,

where δk(n) is the number of time instances passed since
band k was sensed last time. In stationary bandit problems
the term n in the exploration bonus had the desired effect
of asymptotically increasing the time interval between two
consecutive sensings of any suboptimal band. However, since
in the non-stationary problems currently suboptimal band may
later become the optimal band, such asymptotic convergence
property is no longer needed. The method proposed in this
paper replaces the time index n in the exploration bonus by a
constant value ñ > 1 that represents the maximum allowed
time that any band can remain unexplored. The resulting
NRBE policy is shown in Fig. 1. Since the g(y) is an
unbounded increasing function in y, it can be noticed that
when δk(n) = ñ,

g (
ñ

ñ − δk(n)
) =∞

and band k will be selected for sensing. Consequently, the
smaller the value of ñ, the more eager to explore the other
bands the policy will be. When possible, the value of ñ should
be set as close as possible to the expected time interval that
the optimal arm remains constant.

We also propose a windowed RBE (WRBE) policy shown
in Fig. 2. The WRBE policy operates like the stationary RBE
policy in [4], except that a time window of W most recent
rewards are considered. The index of band k is defined as

Ik(n) = x̄
W
k (n) + g (

min(n,W )

min(n,W ) − δk(n)
) ,

where x̄Wk (n) denotes the sample average of the W most
recent rewards. In exploration bonus time variable n has been
replaced by min(n,W ), since in the WRBE time counter
is considered to start from the beginning of the observation
window. Hence, the ”current time instance” in the WRBE is
n if n < W and W if n ≥ W . Similarly as the value of ñ in

NRBE-policy, the value of W should be chosen to match the
expected duration of the best arm remaining unchanged.

V. SIMULATION EXAMPLES

In the simulations we consider three scenarios: a piece-wise
stationary reward scenario, a scenario with continuous reward
mean fluctuations and for the sake of comparison a stationary
scenario to learn how the proposed polices converge. In the
first scenario there are 3 frequency bands where the mean
reward of one of the bands changes abruptly 4 times. The
mean rewards of the bands are µ1(n) = 0.5, µ2(n) = 0.4 and

µ3(n) =

⎧
⎪⎪
⎨
⎪⎪
⎩

0.9, if 3000 ≤ n < 5000 or 10000 ≤ n < 12000

0.3, otherwise.

Such abrupt changes could take place when the CR moves
from one radio environment to another, such as from an office
room to a corridor, around a street corner or during hand-off
to another base station. Similar abrupt changes could occur
when the PU or a source of interference changes it’s transmit
power of spectrum usage rate.

In the second scenario there are 10 frequency bands with
expected data rates continuously varying according to a ran-
dom walk. In the second scenario the mean reward evolution
is such that initially all bands are identical µk(1) = 0.5, ∀k,
and at time n (n ≥ 2) the mean rewards change randomly as

µk(n) = B(µk(n − 1) + 0.02 ⋅ u(n)),

where u(n) ∼ U [−
1
2
, 1

2
] is a uniformly distributed random

variable, and B(y) = y for y ∈ [0,1], B(y) = 0 for y < 0
and B(y) = 1 for y > 1. The second scenario resembles
a situation where the channel condition between the CR
transmitter and receiver gradually changes for example due
to distance dependent path loss.

In the third scenario we compare the policies’ in a stationary
situation. This is done in order to see the performance loss
caused by the non-stationarity assumption when the environ-
ment is actually stationary as well as the convergence of the
non-stationary policies. In this scenario there are three bands
with mean rewards µ1(n) = 0.5, µ2(n) = 0.7 and µ3(n) = 0.9.

In all scenarios the achieved rewards are assumed to be
Bernoulli distributed with success probability µk(n). The
simulations are run for 2 ⋅104 time instances and the resulting
regret curves are averages of 1000 independent Monte Carlo
realizations. In the second scenario the random fluctuations of
the mean rewards are different for each Monte Carlo run.

We compare the proposed NRBE and WRBE policies
against three other non-stationary policies from the literature:
SW-UCB [5], D-UCB [5] and EXP3.S [9]. For comparison
we also include simulations of the stationary UCB policy [15]
using the confidence bound

√

ln(n)/(2mk(n)), where mk(n)
denotes the number of times band k has been sensed until time
n. The parameter values for D-UCB (using the notation in [5])
are γ = 0.9982 (discount factor) and ξ = 0.15. For SW-UCB
the parameters are τ = 1780 (sliding window size) and ξ = 0.6.
Using the notation in [9] the parameters for the EXP3.S policy
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Fig. 3. Cumulative regret for the first scenario with piece-wise stationary
rewards. The lowest cumulative regret is achieved by the proposed NRBE
policy and the D-UCB policy. The stationary UCB policy suffers a clear
performance loss in this non-stationary environment.

are α = 5 ⋅ 10−5 and γ = 0.0658. These values have been
selected according to the parameter optimization derived in
[5] and [9] for scenario 1. For the sake of comparison, the
same parameter values are used for the NRBE and WRBE
policies as the D-UCB and SW-UCB policies, i.e., γ = 0.9982,
ñ = W = 1780. These parameter values are not optimal for
the proposed policies. In our informal experiments in scenario
1 it was found that the NRBE policy achieves the lowest
regret with γ = 0.98 and ñ = 1700. For the WRBE policy the
best performance in scenario 1 was achieved with W = 800.
However, it was found that the WRBE policy is very sensitive
to the size W of the time window. On the other hand, it was
noticed that out of all the simulated policies the NRBE is the
least sensitive to its parameter values γ and ñ. The exploration
bonus used in both NRBE and WRBE is

g (
ñ

ñ − δk(n)
) =

¿

Á
ÁÀlog(

ñ

ñ − δk(n)
),

where the in the case of WRBE ñ is replaced by min(n,W ).
Fig. 3 shows the regret of the policies in the first scenario

with piece-wise stationary rewards. It can be seen that the
performances of the NRBE and D-UCB policies are on par, the
NRBE providing slightly better performance. The performance
of the WRBE policy is close to that of the SW-UCB policy.
The performance of the stationary UCB policy in a non-
stationary environment is poor.

In Fig. 4 the cumulative regret for the second scenario
where the mean rewards fluctuate continuously are shown. The
proposed NRBE achieves again the lowest overall regret while
the regret of the SW-UCB comes fairly close.

The cumulative average regrets of the policies in the third
stationary scenario are shown in Fig. 5. As expected the
stationary UCB policy achieves the best performance, while
the NRBE and WRBE policies achieve notably lowest regrets
among the non-stationary policies.

VI. CONCLUSIONS

In this paper we proposed two learning-based sensing
policies for opportunistic spectrum access, where the spec-
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Fig. 4. Cumulative regret for the second scenario where the expected rewards
fluctuate continuously. The best overall performance is achieved again by the
NRBE policy, while the performance of the SW-UCB policy is not far.
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Fig. 5. Cumulative regret in a stationary scenario. The non-stationary policies
suffer a performance loss compared tot he stationary UCB-policy. The smallest
performance loss is achieved by the proposed WRBE and NRBE policies.

trum opportunities and the expected data rates may be non-
stationary. Using the stochastic non-stationary restless multi-
armed bandit formulation we derived two policies, namely the
NRBE and WRBE policies, for learning the optimal frequency
bands in multi-band cognitive radio. The non-stationarity
assumption is applicable for realistic scenarios where the state
of the spectrum and consequently the rewards are often non-
stationary. Since the proposed policies in this paper are index
policies, they are extremely simple to implement. We have
defined the index of a frequency band to be the sum of its
discounted average observed data rate and a recency-based
exploration bonus. The exploration bonus has been designed
such that it encourages sensing frequency bands that have
not been sensed for a long time, however such that the
number of time instances that any band can stay unexplored is
limited. The simulation examples have demonstrated that the
proposed policies, in particular the NRBE policy, often provide
better performance than other state-of-the-art policies. In our
future work, we intend to provide rigorous analysis of the
performance of the NRBE and WRBE policies. Such analysis
may give insight into policies’ sensitivity to the parameter
values as well as suggest optimal parameter tuning when a
priori knowledge about number of change points is available.
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