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ABSTRACT
Cognition emerges from complex interaction amongst widespread
brain areas. In this paper, we use a novel methodology for temporal
networks quantification for EEG. We model the spatiotemporal
structure of dependencies across different electrodes with respect
to a single electrode as a local probability density function. This
enables immediately the use of information theoretic quantities
(information divergences) to quantify brain connectivity in simple
two-dimensional graphs. We show that for a visual-motor-driven
task, we are able to cluster subjects that performed the task with
higher attention-coefficient, in an unsupervised-fashion. We test
this methodology with two measures of functional connectivity:
correlation coefficient and a measure of association.

Index Terms— Cognitive states, EEG, functional connectivity,
spatiotemporal quantification, clustering.

I. INTRODUCTION
Cognitive science is evolving from a focus on quantification of

discrete brain areas towards an emphasis on distributed models
of brain function, because cognition emerges from the complex
interaction amongst widespread brain areas. Communication re-
quires that there is interchange of information, which can be
captured in the form of transient temporal dependence between
the activities of different brain areas [1]. Functional brain networks
have been constructed from functional magnetic resonance imaging
(fMRI), electroencephalography (EEG), and magnetoencephalogra-
phy (MEG). In terms of measures of functional connectivity, the
correlation coefficient [2][3] will only capture linear interactions
between time series, whereas other measures, such as mutual infor-
mation [3][4][5][6][7], time-series generalized measure of associa-
tion (TGMA) [8], phase synchronization [3][9][10], copulas family
[11] or Granger causality [12], are sensitive to both linear and
nonlinear interactions. Since neural events occur in small windows
of time, it is common to divide the neural data into windows, and,
for each, compute measures of functional connectivity between
pairs of electrodes. This will form a tensor or a concatenation
of matrices for different time windows also known as functional
temporal networks.

In the last decade, the abstract representation of these functional
networks/matrices as a graph has allowed visualization of func-
tional brain networks and description of their non-trial topological
properties in a compact and objective way [13][14][15][16][17].
Despite its evident impact, temporal networks analysis are purely
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based on simple node-counting criteria (e.g. node cluster coeffi-
cient, measures of centrality, local efficiency, connected compo-
nents, etc.), which is a very simple statistic of the underlying com-
munication between brain areas (existing or not). Differentiation
of cognitive states or neurological diseases are then assessed in a
qualitative manner by visualizing node connections of the graphs.

In previous work, we have proposed a novel methodology for
analysis of temporal functional connectivity networks [18]. This
methodology quantifies the spatial structure of pairwise dependence
of each cortical area (electrode with respect to a given electrode)
as a probability density function (pdf). Since we are interested
in quantifying communication in a spatiotemporal-fashion, we use
information theoretic quantities to do so, namely Cauchy-Schwartz
Quadratic Mutual Information [19]. We can now quantify how
much each functional spatial structure (captured by pdf) changes
from one time window to the next. Static spatial structures can
also be analyzed using this methodology. For that, we simply fix
the time window and quantify dependencies/similarities between
pdfs from different cortical areas. Besides quantification of tem-
poral functional networks, we can now perform clustering of the
spatiotemporal patterns each subject acquires and, in this way,
quantitatively assess their cognitive state or neurological disorder.

The present work illustrates the potential of this novel method-
ology (described in [18]) by: i) use two different measures of
functional connectivity and evaluate the differences based on a
visual-motor-driven task; and ii) cluster the quantification patterns,
that is, agglomerate people with (potentially) similar cognitive
state (attention-coefficient) in the task-solving problem in an
unsupervised-fashion. We show that we can unsupervisely cluster
people with the same attention state.

The rest of the paper is organized as follows. Section II in-
troduces the neural data and its conditioning. Section III fully
describes the novel methodology to quantify dense EEG as well as
the additional improvements. Section IV presents results for: the use
of different measures of functional connectivity; pdf estimation per
cortical area; unsupersived clustering of people by cognitive state;
and discussion. Finally, section V offers some concluding remarks.

II. MATERIALS

EEG data was acquired from a total of 15 participants. The data
was continuously recorded from 129 sensors using an Electrical
GeodesicsTM HydroCel Geodesic Sensor Net, digitized at a rate of
250 Hz, using the vertex sensor (Cz) as the recording reference,
with the online band-pass filter set at 50 Hz (low-pass). Sensor
impedances were kept below 50 kΩ.
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Subjects engaged in a task composed by avoidable (CS+) vs
unavoidable (CS–) conditions. The CS+ and CS– gratings were
presented centrally and flickered at 15 Hz. The avoidable vs
unavoidable context was signaled by additional geometric shapes
(flickering at 12 Hz). Conditions: CS+ active trials (appropriate
motor response cancels UCS delivery), CS+ passive trials (no
motor response is required and UCS delivery is inevitable), CS–
active trials (appropriate motor response is required, but UCS is
never delivered) and CS– passive trials (no motor response is
required and UCS is never delivered). A salient color change of the
peripheral cues, from gray to green, that occurred halfway within
each trial (3 s from stimulus onset with a 2 s duration) served as the
proximal impetus for motor responses. A simple button press during
a circumscribed temporal window successfully canceled delivery of
the white noise (UCS). Trials were 6 s in length and the inter-trial
interval varied randomly between 4 and 5 s. (More details in [20]).

III. METHODOLOGY
Consider a time window t of the EEG recordings from 129

channels/electrodes. First, we compute the pairwise functional
connectivity between each electrode. This results in an 129× 129
matrix Kt for time window t, where Ktij is the functional con-
nectivity between electrode i and electrode j. Now, we consider
each column of Kt as a random variable (r.v.) and estimate its
probability density function (pdf). This results in 129 pdfs, one
for each electrode. To compute these pdfs, we do not include the
elements Ktii (giving a total of 128 points). For the last step,
we quantify the similarity between two pdfs across time using
Cauchy-Schwartz Quadratic Mutual Information (CS-QMI) [19].
For example, consider electrode e75 (column 75), for time windows
t = 4 and t = 5, we compute CS-QMI

(
f
(
K4

75

)
, g
(
K5

75

))
, where

f and g are pdfs. This result will appear in the row 75 and column
4 of the spatiotemporal quantification matrix Qm of participant m.

Finally, for each condition (CS+ACtive, CS+Passive, CS–Active,
CS–PAssive), we cluster the spatiotemporal patterns Qm where
m = {1, 2, . . . , 15}.

III-A. Correlation Coefficient
One of the simplest ways to measure the statistical dependence

between r.v.s is the correlation coefficient, which only captures
second order statistical interactions. Let X and Y be two r.v.s,
the correlation coefficient is

ρ(X,Y ) =
E[(X − µX)(Y − µY )]

σXσY

where µX and σX are the sample mean and standard deviation of
X , and µY and σY are the sample mean and standard deviation of
Y . The correlation coefficient returns values between −1 and 1. We
are going to take the absolute value because we are only interested
in the amount of correlation between the two times series, not the
sign.

III-B. Time Series Generalized Measure of Association
The Generalized Measure of Association (or GMA) [8] is a

parameter-free spatial dependency measure of association and can
be defined as:

GMA =
1

n− 1

n−1∑
i=1

(n− r)P (R = r)

Fig. 1: A. Experimental paradigm consists of four different conditions,
which were presented to the subjects in a pseudorandom order – Avoidance
conditioning: CS+ trials were always paired with the unconditioned stimulus
(UCS). A loud white noise burst was used as UCS. The CS– trials were
never paired. The avoidable versus unavoidable context was signaled by
geometric shapes. B. Each trial as the duration of 6 s onset and 400 ms
offset. The visual cue is alerted by color change at 3 s onset.

where P (R = r) is defined as P (R = r) = #{i : ri = r}/n,
and represents the empirical probability of the rank variable. GMA
assumes values between 0.5 and 1. Since the EEG can be modeled
as a stochastic time series, GMA was modified to Time Series GMA
or TGMA [8], which includes a pre-optimization step to minimize
the time correlation properties of stochastic processes. For TGMA
the parameters needed to estimate are the embedding dimension m
and the lag value L. For this study the authors considered m = 5
and L = 5. These values can be computed directly from data [8].

III-C. Spatiotemporal Quantification of Functional Activity

To quantify the pdf changes over time, we use Cauchy-Schwartz
Quadratic Mutual Information (CS-QMI). This is an estimator for
continuous r.v. that can be evaluated in a Reproducing Kernel
Hilbert Space (RKHS) using the kernel trick if we use a positive
definite function (such the Gaussian) in Parzen estimation [21]. Let
X1 and X2 be two r.v.s. The CS-QMI between the two r.v.s X1 and
X2 is defined as the Cauchy-Schwartz divergence (DCS) between
the joint distribution of X1 and X2 and the product of the marginal
distribution of X1 with the marginal distribution of X2, that is:

ICS(X1, X2) = DCS(fX(x1, x2), fX1(x1)fX2(x2)), where

DCS(f, g) = − log

(∫
f(x)g(x)dx

)2∫
f2(x)dx

∫
g2(x)dx

= log

∫
f2(x)dx+ log

∫
g2(x)dx− 2 log

∫
f(x)g(x)dx

= 2Ĥ2(fg)− Ĥ2(f)− Ĥ2(g)

where Ĥ2(f) is the Renyi’s quadratic entropy estimator of the pdf
f . Using a Gaussian kernel (Parzen) estimator [21], for samples xi
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drawn from pdf f , Ĥ2(f) can be written as

Ĥ2(f) = − log

∫ +∞

−∞

(
1

N

N∑
i=1

Gσ(x− xi)

)2

dx

= − log

(
1

N2

N∑
i=1

N∑
j=1

Gσ
√
2(xj−xi)

)
Using the same nomenclature, in this step we estimate the

pdfs of all Ki, i = {1, 2, . . . , 129} as a Gaussian kernel esti-
mator f

(
Kti
)

and quantify the temporal dependencies as Qi,t =
ICS

(
f
(
Kti
)
, g
(
Kt+1
i

))
.

III-D. Clustering of Spatiotemporal Patterns
It is known that people process information somewhat similarly

but different factors, such as attention, may alter their cognitive
states. To quantify how similar different individuals solve a task, we
are going to perform hierarchical clustering of the spatiotemporal
patterns Qm across all m = {1, 2, . . . , 15} subjects. First, we
compute the L2-norm between matrices to generate a distance
matrix D of size 15× 15.

To the matrix D we perform agglomerative hierarchical cluster-
ing using Ward’s linkage method [22]. The Ward’s linkage method
minimizes the total within-cluster variance as a squared Euclidean
distance. The within-cluster sum of squares is defined as the sum
of the squares of the distances between all objects in the cluster
and the centroid of the cluster. The sum of squares measure is
equivalent to the following distance measure:

d(r, s) =

√
2nrns

(nr + ns)

∥∥X̄r − X̄s∥∥2
where ‖•‖2 is the Euclidean distance or L2-norm, X̄r and X̄s are
the centroids of clusters r and s, nr and ns are the number of
elements in clusters r and s.

IV. RESULTS
IV-A. Measures of Functional Connectivity

Having computed the functional temporal networks {Ktcorr}m
and {KtTGMA}m for all t windows of all m participants using
both correlation coefficient and TGMA, respectively, we are now
ready estimate the pdfs.

An example of the pdfs of {K12
corr}8 and {K12

TGMA}8 captured
using a Gaussian kernel with kernel width σ = 0.05 can be
seen in Figure 2. There is a large difference between these pdfs,
with the TGMA more peaky and short tails (Figure 2 first row),
while the pdfs with correlation (Figure 2 second row) tend to have
more samples across the range of values, perhaps because of the
higher specificity of TGMA [8]. So we see that both measures
are substantially different in quantifying the dependence across
channels.

Because of the variability of the EEG, we averaged the spa-
tiotemporal patterns Qmcorr and QmTGMA with m = {1, 2, . . . , 15}
by conditions (CS+Active, CS+Passive, CS–Active, CS–Passive) to
visualize how the average person reacts to the experiment. Figures
3 and 4 show these averages when using correlation and TGMA
respectively. The electrodes have been rearranged by brain regions
as described in [18], namely frontal (Fr), left temporal (LT), right
temporal (RT), parietal (Pa) and occipital (Oc).

Fig. 2: Example of pdfs from subject m = 8, condition CS+Active, time
window t = 12, correspondent to [2.6, 2.8] s. First (second) row illustrates
these pdfs for TGMA (correlation) in 3 electrodes of each 5 brain areas
considered, namely 10, 17, 23 (frontal), 102, 114, 122 (right remporal), 6,
37, 79 (parietal), 66, 75, 84 (occipital), and 44, 51, 128 (right remporal).

Fig. 3: Average by condition of spatiotemporal quantification using corre-
lation measures of functional connectivity.

Fig. 4: Average by condition of spatiotemporal quantification using TGMA
measures of functional connectivity.

For correlation, CS-QMI has quantified major changes in the
frontal cortex, mainly in the beginning of the task, during the
visual cue presentation and at the end of the task. We believe these
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changes are related to the interpretation of the given condition
trial. In addition, for the active trials (where motor response is
required), we see a change across brain areas between 3-4 s
which corresponds to the time the visual cue is presented and the
motor action is performed (Figure 3). However, there is not much
difference between the active and passive conditions nor between
the conditions CS+ and CS–, which should be different on average
[18]. On the other hand, TGMA captured both frontal activity
and motor activity (in the RT region) aligned with the visual cue
presentation (Figure 4), and there is more variability across the four
conditions as expected.

Fig. 5: Agglomorative clustering with Ward’s method [22] of an L2-distance
matrix of spatiotemporal patterns computed from correlation.

IV-B. Clustering of Cognitive States
The previous average results assume that all subjects accomplish

the task in the same way, which is highly unlikely. In fact, during
the collection of this data, it was observed that certain individuals
m∗ = {1, 5, 6, 7, 12, 13, 14} were motivated to respond faster
to the visual cue. However, a subject by subject analysis of the
EEG is normally not pursued in cognitive science because of the
noise and variability of the responses. Since our methodology is
based on pairwise measures and we capture their responses over
the head in terms of a single probability function per electrode,
we think our methodology can be extended to subject specific
quantification. Figure 5 and 6 present results of agglomerative
clustering using Ward’s method [22] from L2-distance matrices
of the spatiotemporal quantification from correlation and TGMA
measures, respectively. Correlation-based spatiotemporal quantifi-
cation returns larger L2-distances amongst participants compared to
TGMA, which may mean that the TGMA is less sensitive to the dif-
ferences in EEG across subjects. We can also see, just by eyeballing
the dendograms, that the two measures produce rather different
clusterings of subjects. However, each dependence measure tends
to preserve the clusters amongst the four experimental conditions.
For instance, the dendrograms are similar between Active trials, as
well as between Passive trials within each measure. Perhaps the
dendrogram that is the most different is the CS-Passive, which is
the condition where the subject is least engaged in the experiment.

Cutting the dendrograms requires some knowledge about the
application. In our case, we can expect to have at least 2 clusters:

one for the faster responders and the other for the remaining
people. For correlation, if we expect to see 2 clusters, the threshold
cut should be at around 60 (Figure 5). In CS+Active condi-
tion (the most attention-demanding task), the cluster mcorr

1 =
{1, 2, 3, 4, 5, 6, 9, 11, 12} is observed. This cluster contains ap-
proximately 57.14% of faster responders. For CS+Active using
TGMA (Figure 6 top left) and a threshold of around 15, the
cluster mTGMA

1 = {2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15} contains
approximately 85.71% faster responders. Note that the clustering
is purely unsupervised.

Fig. 6: Agglomorative clustering with Ward’s method [22] of an L2-distance
matrix of spatiotemporal patterns computed from TGMA.

IV-C. Discussion
This study relates motivated visual brain function to its be-

havioral consequences. Regions falling within the dorsal pathway
and the frontal cortex showed stronger synchronization with the
visual cortex during the active motor compared with the passive
viewing condition, as showed in [20]. These areas (in the visual
cue presentation time) can be extracted from the spatiotemporal
matrices as supervised features so that clustering results can better
agglomerate the faster responders. We show that TGMA seems a
more precise measure of dependence than correlation. However,
our results still lack a more direct way to establish the accuracy of
the proposed methodology, because attention as a cognitive state is
a somewhat subjective feature. Therefore in future work we plan to
create a realistic synthetic data set for EEG where we can evaluate
with more detail our methodology. The capture or quantification of
different states, like neurological events vs healthy events, can also
be explored using this methodology.

V. CONCLUSIONS
Several methodologies have approached neural spatial com-

munication. In this paper, we present a novel methodology to
quantify spatiotemporal communication, completely adapted from
EEG data. We tested two measures of functional connectivity and
unsupervisely clustered the spatiotemporal patterns of a visual-
motor-driven task for each individual. We show that for a visual-
motor-driven task, we are able to cluster subjects that performed the
task with higher attention-coefficient, in an unsupervised-fashion.
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