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ABSTRACT 

 

In this paper, we apply the idea of deep learning to radar 

waveform recognition. Since the frequency variation with 

time is the most essential distinction among radar signals 

with different modulation types, we transform one-

dimensional radar signals into time-frequency images (TFIs) 

using time-frequency analysis and design a convolutional 

neural network to recognize the frequency variation patterns 

exhibited in TFIs. Furthermore, we analyze the statistical 

characteristics of the noise in TFIs and introduce a naive 

approach to reduce its influence on the frequency variation 

patterns. Simulation results demonstrate the impressive 

recognition rate under very low SNR conditions and the 

strong generalization ability of our proposed recognition 

method. 

 

Index Terms— radar waveform recognition, deep 

learning, convolutional neural network, time-frequency 

image, noise reduction 

 

1. INTRODUCTION 

 

Automatic radar waveform recognition is one of the most 

fundamental techniques in electronic warfare (EW) 

applications such as cognitive radar, radar emitter 

recognition, and threat detection [1]. Lots of methods have 

been proposed to recognize radar signals with different 

modulation types, most of which are composed of two parts, 

i.e., feature extraction and classifier design. Though 

designing efficient classifier is indispensable, feature 

extraction plays the key role. In order to exhibit the 

distinctions among different radar signals, many signal 

processing methods are employed to handle single radar 

pulses. For example, Lunden [1], Zheng [2][3], Ren [4] and 

Konopko [5] derive features based on time-frequency 

analysis (TFA), Rigling [6] and Wang [7] exploit features 

based on auto-correlation functions, and Pu [8] and Gao [9] 

characterize the frequency change of radar signals based on 

instantaneous frequency analysis (IFA). In addition, high-

order spectral analysis [10], principle component analysis 

[11] and entropy method [12] are also used to derive 

features. As for classifier design, many frequently-used 

machine learning methods are directly applied to classify the 

extracted features, such as clustering [4][11][13], support 

vector machine [9][10][14][15], artificial neural network 

[12], and probabilistic graphical model [7]. Additionally, 

some self-designed classifiers [1][2][3][8] are also employed. 

Those aforementioned classical two-step recognition 

methods suffer two common weaknesses. First, in order to 

obtain discriminative features, too much attention have to be 

paid to discover efficient distinctions and to find ways to 

characterize them, but sometimes, some important features 

may be undiscovered, or the extracted features are not 

discriminative enough for recognition. For instance, Gao [9] 

extracts features based on IFA and Wang [7] extracts 

features based on ACF, and because IFA is very sensitive to 

the noise while ACF is relatively robust, the ACF-based 

algorithm outperforms the IFA-based algorithm. Second, 

seldom of these methods pave ways to tackle the influence 

of the noise. Konopko [5] intuitively designs a filter to 

handle the noise without any theoretical support, and just 

receives a slight performance improvement. 

To overcome the first drawback, we apply the idea of 

deep learning to radar waveform recognition. Automatically 

learning the features of the input data is the core of deep 

learning methods. Their hierarchical deep network structures 

simulate the neural network of human brains and 

mathematically act as adaptive nonlinear kernel functions. 

Though feature extraction is not needed any more, different 

representations of radar signals as input may contribute to 

different results. In fact, the most essential distinction among 

radar waveforms with different modulation types is their 

frequency variation with time. TFA transforms one-

dimensional signals into time-frequency images (TFI), which 

explicitly exhibit their frequency variation patterns. In our 

work, a convolutional neural network (CNN), which has 

shown significant results in facial recognition [16], vehicle 

recognition [17][18] and other recognition tasks is designed 

to recognize TFIs of radar signals, and we name this method 

as TFI-CNN. To cope with the second drawback, we first 

analyze the statistical characteristics of TFIs, and then 

design a naive filter based on the theoretical analysis to 

suppress the noise in TFIs. 

This paper is developed as follows. Section 2 introduces 

the TFI-CNN method, analyzes the statistical characteristics 

of the noise in TFIs, and proposes a noise reduction 

approach. Section 3 illustrates the simulation results and 
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mainly discusses the generalization ability of our proposed 

method. Section 4 concludes this paper. 

2. CLASSIFIER DESIGN AND NOISE REDUCTION 

 

2.1. TFI-CNN method 

 

Suppose the intercepted noise-disturbed radar signal is 

                   ( ) ( ) ( )y t x t N t  ,                          (1) 

where x(t) denotes a radar signal and N(t) is the additive 

Gaussian white noise with zero mean value and 2  variance. 

The most intrinsic difference among radar waveforms with 

different modulation types is their frequency variation with 

time. For instance, the frequency of a linear frequency 

modulation radar signal changes linearly with time and that 

of a frequency coding radar signal shifts with time. TFA 

transforms one-dimensional radar signals as TFIs, and the 

patterns in the images demonstrate the frequency evolution 

with time. 

Now that TFIs are images, we can use a CNN to 

recognize them. CNN is consisted of multiple cascading 

layers, within which are feature maps.  The deep network 

structure simulates the neural network of human brains and 

the hierarchical nonlinear combination of feature maps 

produces a highly complex and adaptive nonlinear kernel 

function. As depicted in Fig. 1, we design a CNN consisted 

of four convolutional layers, three pooling layers and one 

fully connected layer to recognize the TFIs of radar     

signals. 

 

2.2. Statistical analysis of TFI and noise reduction 

 

Wigner-Ville Distribution (WVD) is one of the frequently-

used TFA methods, and the cross WVD of two signals g(t) 

and h(t) can be obtained as 

      *
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If g(t) and h(t) are equal, Eq. 2 is the auto WVD of g(t). By 

combining Eq. 1 with Eq. 2, the WVD of a noise-disturbed 

radar signal can be represented as 

         , ,, , , , ,y x x N N x N

I IVII III

W t W t W t W t W t        , (3) 

where (I) and (IV) are the auto WVDs of the radar signal 

and the noise, respectively, and (II) and (III) are their cross 

WVDs. Term (I) demonstrates the frequency variation of 

radar signals and terms (II), (III) and (IV) play the role of 

disturbing (I). Therefore, it is necessary to diminish their 

influence on (I). 

To reduce the influence of the cross WVDs, the 

preferred option is using Cohen class, which is more suitable 

for the WVD of a signal composed of multiple single-

frequency signals. However, the power spectrum of 

Gaussian white noise occupies the full-frequency band, 

indicating that Cohen class would not work at all. In 

addition, term (IV) is the auto WVD of N(t), which cannot 

be suppressed by applying Cohen class. Therefore, we need 

to explore new ways to reduce the influence of (II), (III) and 

(IV). For (II) and (III), since they are linear transformations 

of N(t), they comply with a zero-mean two-dimensional 

stationary Gaussian process. Their correlation function is 
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Fig. 1. The structure of the designed CNN with four convolutional layers, three pooling layers and one fully connected layer. The 

number of feature maps of each convolutional layers is 20, 12, 12, and 8, respectively. The kernel size of each convolutional layers is 

3×3, 3×3, 2×2, and 2×2, respectively. 
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Fig. 2. The filtering process. Each point on the TFI is updated 

by averaging these points within the coverage of the square 
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(4) 

Supposing the complex envelop of any radar pulse is 

( ) ( )exp( ( ))x t g t j t , where g(t) is a window function with 

duration time equal to T, if t1=t2, 
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Considering T is relatively large, Eq. 5 approximately equals 

to the impulse function  ( 1- 2) especially when g(t) is a 

rectangle function. When t1 t2, Eq. 4 is complex. However, 

because radar waveforms change continuously, we could 

still regard Eq. 4 as  ( 1- 2) as long as t1-t2 is small. 

Therefore, if the distance of any two different points of (II) 

or (III) is not too far, they are nearly uncorrelated. As for 

(IV), it is still zero-mean white noise (shown in Appendix).  

Note that (II) and (III) are short-distance uncorrelated 

and (IV) is the white noise, we could regard the three terms 

as white noise within local areas of the TFIs. Knowing the 

expectation of the white noise is equal to zero, we update 

each point in the TFIs by averaging points within the 

coverage of a square, illustrated in Fig. 2. However, the 

filtering process also inevitably exerts its influence on (I), 

which will be discussed in detail in Section 3. 

 

3. SIMULATION RESULTS AND DISCUSSION 

 

3.1. Simulation results of the TFI-CNN method 

 

Linear frequency modulation radar signals (LFM), single 

carrier radar signals (SCR), phase coded radar signals with 

three-element Barker code (PCR3), frequency coded radar 

signals with five-element Costas code, and nonlinear 

frequency modulation radar signals (NLFM) are used to 

evaluate the TFI-CNN method. Meanwhile, we reevaluate 

the state-of-the-art radar waveform recognition method [7] 

(which is named as ACF-DGM in this paper) on its own 

dataset composed of three types of radar signals, i.e., LFM, 

SCR, and PCR3. In order to simulate real radar signals, we 

generate all the radar signals with different carrier frequency, 

LFM signals with different slope, and NLFM signals with 

different sweep-frequency range, and the three parameters 

comply with three different uniform distributions. Moreover, 

when radar signals are transformed into TFIs, generally they 

are too large, which is time-consuming to manipulate, so we 

down-sample them to 50×50. Simulation results are shown 

in Fig. 3. As illustrated, the TFI-CNN method shows a 

significant performance improvement compared with the 

ACF-DGM method, and notably, the recognition rate is still 

higher than 95% under -5dB SNR condition. Additionally, 

Zheng [2] tests his TFA-based method on dataset composed 

of five types of radar signals similar to ours, and only 

receives 90% recognition rate under -4dB SNR condition.  

 

3.2. Diminishing the influence of noise 

 

The TFIs are first smoothed by the designed filter, and then 

down-sampled to 50×50. We vary the filter size to test the 

performance of the noise-reduction approach. Simulation 

results are illustrated in Fig. 4, which shows that a 

smoothing filter of size 23 by 23 gives the best recognition 

rate improvement at around 8%. 

In fact, the smoothing filter is a low-pass filter, so 

increasing the filter size decreases its low-pass bandwidth. 

To reduce the influence of the noise, filtering with larger 

size would be more efficient. However, when the filter size 

is too big, not only the short-distance uncorrelation property 

of the cross WVDs of radar signals is violated, but also too 

much high-frequency components of the frequency variation 

patterns are filtered out. In summary, the filtering process 

suppresses the influence of the noise as well as reduces the 

resolution of the frequency variation patterns. 

 

3.3. Evaluating the generalization ability 

 

While the TFI-CNN method exhibits its efficiency on the 

dataset composed of five types of radar signals, we wonder 

whether it would still work well on dataset consisted of more 

types of radar signals. To test its generalization ability, we 

add two more types of radar signals, i.e., phase coded radar 

signals with thirteen-element Barker code, frequency coded 

radar signals with ten-element Costas code, and evaluate our 

proposed method along with the ACF-DGM method on the 

same dataset composed of the seven types of radar signals. 

Simulation results are shown in Fig. 5. As illustrated, the 

TFI-CNN method still maintains outstanding performance in 

a broad range of SNR condition while the ACF-DGM 

method has lost its effectiveness. Additionally, Lunden [1] 

tests his WVD-based method on dataset consisted of eight 

types of radar signals and only achieves 98% recognition 

rate under +6dB SNR condition.  

Since the ACF-DGM method extracts features based on 

the ACFs, any radar signals with similar ACFs will be 

difficult to discriminate. Unfortunately, the ACFs of LFM 

and NLFM radar signals are extremely similar to each other, 

which contributes to the radical performance decline of the 

ACF-DGM method. In fact, the frequency variation is the 

most intrinsic distinction among different radar waveforms, 
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which further results in the differences of ACFs, high-order 

spectrums, entropy, principle components, and other 

characteristics. Most of the existing algorithms derive 

features based on these differences, but once some types of 

radar signals show similar properties on some characteristic, 

the corresponding difference would not be distinguishing 

enough for recognition. The TFI-CNN method directly 

learns to characterize the most intrinsic difference, and 

therefore shows strong generalization ability. 

 

4. CONCLUSION 

 

We propose a novel method to recognize radar waveforms 

with different modulation types. In contrast to existing 

works, we apply deep learning to radar waveform 

recognition. A CNN is designed to recognize TFIs of radar 

signals, the statistical characteristics of the noise in TFIs are 

analyzed and a naive noise-reduction approach is introduced. 

Simulation results demonstrate the impressive performance 

of the TFI-CNN method and show the effectiveness of the 

proposed noise-reduction approach. With relatively strong 

generalization ability, the TFI-CNN method is more 

applicable for real application. 

5. APPENDIX 

 

In this appendix, we give the proof of the white noise 

property of the auto WVD of the Gaussian white noise N(t). 

The auto WVD of N(t) is a two-dimensional stochastic 

process, and the correlation function is 
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(A) 

To obtain the final result of Eq. A, we first introduce a 

conclusion of high-order cumulants of Gaussian stochastic 

process. It says that for a Gaussian stochastic process g(t), 

its high-order cumulants can be expressed by two-order 

movements, and when the order equals to four, 
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As for the expectation within the integration in Eq. A, 

for brevity, we denote it as 
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and when 
1 2t t , the expectation can be obtained as 
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Substitute Eq. D and Eq. E back to Eq. A, the final result 

can be obtained as 
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Therefore, the auto WVD of the Gaussian white noise 

process is still a white noise stochastic process. 
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Fig. 3. Simulation results of the TFI-CNN method along with 

the ACF-DGM method 
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Fig. 4. Simulation results of the TFI-CNN method applied to 

the noise-suppressed TFIs. The performance is tested using 

filters with different sizes, i.e. 11×11, 23×23, and 27×27 
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Fig. 5. Simulation results of evaluating the generalization 

ability of TFI-CNN method along with the ACF-DGM method 
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