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ABSTRACT
We describe and analyze a simple and effective algorithm for
sequence segmentation applied to speech processing tasks.
We propose a neural architecture that is composed of two
modules trained jointly: a recurrent neural network (RNN)
module and a structured prediction model. The RNN outputs
are considered as feature functions to the structured model.
The overall model is trained with a structured loss function
which can be designed to the given segmentation task. We
demonstrate the effectiveness of our method by applying it
to two simple tasks commonly used in phonetic studies: word
segmentation and voice onset time segmentation. Results sug-
gest the proposed model is superior to previous methods, ob-
taining state-of-the-art results on the tested datasets.

Index Terms— Sequence segmentation, recurrent neural
networks (RNNs), structured prediction, word segmentation,
voice onset time

1. INTRODUCTION

Sequence segmentation is an important task for many speech
and audio applications such as speaker diarization, laboratory
phonology research, speech synthesis, and automatic speech
recognition (ASR). Segmentation models can be used as a
pre-process step to clean the data (e.g., removing non-speech
regions such as music or noise to reduce ASR error [1, 2]).
They can also be used as tools in clinically- or theoretically-
focused phonetic studies that utilize acoustic properties as a
dependent measure. For example, voice onset time, a key
feature distinguishing voiced and voiceless consonants across
languages [3], is important both in ASR [4], clinical [5], and
theoretical studies [6].

Previous work on speech sequence segmentation focuses
on generative models such as hidden Markov models (see for
example [7] and the references therein); on discriminative
methods [2, 8, 9]; or on deep learning [10, 11].

Inspired by the recent work on combined deep network
and structured prediction models [12, 13, 14, 15, 16], we
would like to further improve performance on speech se-
quence segmentation and propose a new efficient joint deep
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network and structure prediction model. Specifically, we
jointly optimize RNN and structured loss parameters by using
RNN outputs as feature functions for a structured prediction
model. First, an RNN encodes the entire speech utterance
and outputs new representation for each of the frames. Then,
an efficient search is applied over all possible segments so
that the most probable one can be selected. We evaluate
this approach using two tasks: word segmentation and voice
onset time segmentation. In both tasks the input is a speech
segment and the goal is to determine the boundaries of the de-
fined event. We show that the proposed approach outperforms
previous methods on these two segmentation tasks.

2. PROBLEM SETTING

In the problem of speech segmentation we are provided with a
speech utterance, denoted as x̄ = (x1, . . . ,xT ), represented
as a sequence of acoustic feature vectors, where each xt ∈
RD (1 ≤ t ≤ T ) is a D-dimensional vector. The length of
the speech utterance, T , is not a fixed value, since the input
utterances can have different durations.

Each input utterance is associated with a timing sequence,
denoted by ȳ = (y1, . . . , yp), where p can vary across differ-
ent inputs. Each element yi ∈ Y , where Y = {1, . . . , T}
indicates the start time of a new event in the speech signal.
We annotate all the possible timing sequence of size p by Yp

For example, in word segmentation the goal is to segment
a word from silence and noise in the signal. In this case the
size of ȳ is 2, namely word onset and offset. However, in
phoneme segmentation the goal is to segment every phoneme
in a spoken word. In this case the size of ȳ is different for
each input sequence.

Generally, our method is suitable for different sequence
size |ȳ|. In this paper we focused on |ȳ|= 2, and leave the
problem of |ȳ|> 2 to future work.

3. MODEL DESCRIPTION

We now describe our model in greater detail. First, we present
the structured prediction framework and then discuss how it
is combined with an RNN.
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3.1. Structured Prediction

We consider the following prediction rule withw ∈ Rd, such
that ȳ′w is a good approximation to the true label of x̄, as
follows:

(1)ȳ′w(x̄) = argmax
ȳ∈Y

w>φ(x̄, ȳ)

Following the structured prediction framework, we as-
sume there exists some unknown probability distribution ρ
over pairs (x̄, ȳ) where ȳ is the desired output (or reference
output) for input x̄. Both x̄ and ȳ are usually structured ob-
jects such as sequences, trees, etc. Our goal is to set w so as
to minimize the expected cost, or the risk,

w∗ = argmin
w

E(x̄,ȳ)∼ρ[`(ȳ, ȳ
′
w(x̄))]. (2)

This objective function is hard to minimize directly since
the distribution ρ is unknown. We use a training set S =
{(x̄1, ȳ1), . . . , (x̄m, ȳm)} of m examples that are drawn
i.i.d. from ρ, and replace the expectation in (2) with a mean
over the training set.

The cost is often a combinatorial non-convex quantity,
which is hard to minimize. Hence, instead of minimizing the
cost directly, we minimize a slightly different function called
a surrogate loss, denoted ¯̀(w, x̄, ȳ), and closely related to
the cost. Overall, the objective function in (2) transforms into
the following objective function, denoted as F :

(3)F (w, x̄, ȳ) =
1

m

m∑
i=1

¯̀(w, x̄, ȳ)

In this work the surrogate loss function is the structural
hinge loss [17] defined as

¯̀(w, x̄, ȳ) = max
ȳ′∈Y

[
`(ȳ, ȳ′)−w>φ(x̄, ȳ) +w>φ(x̄, ȳ′)

]
Usually, φ(x̄, ȳ) is manually chosen using data analysis

techniques and involves manipulation on local and global fea-
tures. In the next subsection we describe how to use an RNN
as feature functions.

3.2. Recurrent Neural Networks as Feature Functions

RNN is a deep network architecture that can model the be-
havior of dynamic temporal sequences using an internal state
which can be thought of as memory [18, 19]. RNN provides
the ability to predict the current frame label based on the pre-
vious frames. Bidirectional RNN is a model composed of two
RNNs: the first is a standard RNN while the second reads the
input backwards. Such a model can predict the current frame
based on both past and future frames. By using the RNN out-
puts we can jointly train the structured and network models.

Recall our prediction rule in Eq. (1): notice that φ(x̄, ȳ)
can be viewed as

∑p
i=1 φ

′(x̄, yi) where each φ can be ex-
tracted using different techniques, e.g., hand-crafted, feed-
forward neural network, RNNs, etc. We can formulate the

prediction rule as follows:

(4)

ȳ′w(x̄) = argmax
ȳ∈Yp

w>φ(x̄, ȳ)

= argmax
ȳ∈Yp

w>
p∑
i=1

φ′(x̄, yi)

= argmax
ȳ∈Yp

w>
p∑
i=1

RNN(x̄, yi),

where the RNN can be of any type and architecture. For
example, we can use bidirectional RNN and consider φ as the
concatenation of both outputs BI-RNNforward⊕BI-RNNbackward.
This is depicted in Figure 1. We call our model DeepSegmen-
tor .

�(x, 1) �(x, 2) �(x, 3) �(x, 4) �(x, 5) �(x, 6)

y1 y2ŷ2ŷ1

Loss

Fig. 1. An illustration for using BI-RNN as feature functions.
We search through all possible locations and predict the one
with the highest score. In this example the target timing se-
quence is (1, 6) and the predicted timing sequence is (2, 5).

Our goal is to find the model parameters so as to min-
imize the risk as in Eq. (2). Recall, we use the structural
hinge loss function, and since both the loss function and the
RNN are differentiable we can optimize them using gradi-
ent based methods such as stochastic gradient descent (SGD).
In order to optimize the network parameters using the back-
propagation algorithm [20], we must find the outer derivative
of each layer with respect to the model parameters and inputs.

The derivative of the loss layer with respect to the layer
parameters w for the training example (x̄, ȳ) is

∂F

∂w
= φ(x̄, ȳ`w)− φ(x̄, ȳ),

where

ȳ`w = argmax
ȳ′∈Yp

w>φ(x̄, ȳ′) + `(ȳ, ȳ′). (5)
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Similarly, the derivatives with respect to the layer’s inputs are

∂F

∂φ(x̄, ȳ)
= −w ∂F

∂φ(x̄, ȳ′)
= w.

The derivatives of the rest of the layers are the same as an
RNN model.

4. EXPERIMENTAL RESULTS

We investigate two segmentation problems; word segmenta-
tion and voice onset time segmentation. We describe each of
them in details in the following subsections.1

4.1. Word Segmentation

In the problem of word segmentation we are provided with a
speech utterance which contains a single word; our goal is to
predict its start and end times. The ability to determine these
timings is crucial to phonetic studies that measure speaker
properties (e.g. response time [23]) or as a preprocessing step
for other phonetic analysis tools [11, 10, 9, 8, 24].

4.1.1. Dataset

Our dataset comes from a laboratory study by Fink and
Goldrick [23]. Native English speakers were shown a set
of 90 pictures. Some participants produced the name of the
picture (e.g., saying “cat”, “chair”) while others performed
a semantic classification task (e.g., saying “natural”, “man-
made”). Productions other than the intended response or
disfluencies were excluded. Recordings were randomly as-
signed to two transcribers who annotated the onset and offset
of each word. We analyze a subset of the recordings, in-
cluding data from 60 participants, evenly distributed across
tasks.

4.1.2. Results

We compare our model to an RNN that was trained using the
Negative-Log-Liklihood (NLL). The NLL model makes a bi-
nary decision in every frame to predict whether there is voice
activity or not. Recall, our goal is to find the start and end
times of the word; in this task, the RNN leaves us with a dis-
tribution over all possible onsets. To account for this, we ap-
ply a smoothing algorithm and find the most probable pair of
timings.

We trained the DeepSegmentor model using the structured
loss function as in (6), denoted as Combined Duration (CD)
loss. The motivation for using this function is due to dispari-
ties in the manual annotations, which are common and depend
both on human errors and objective difficulties in placing the

1All models were implemented using Torch7 toolkit [21, 22]

boundaries. Hence we chose a loss function that takes into
account the variations in the annotations.

γ(ȳ, ȳ′) = [|y1 − y′1|−τ ]+ + [|y2 − y′2|−τ ]+, (6)

where [π]+ = max{0, π}, and τ is a user defined tolerance
parameter.

We use two layers of bidirectional LSTMs for the DeepSeg-
mentor model with dropout [25] after each recurrent layer.
We extracted the 13 Mel-Frequency Cepstrum Coefficients
(MFCCs), without the deltas, every 10 ms, and use them
as inputs to the network. We optimize the networks using
AdaGrad [26]. All parameters were tuned on a dedicated
development set for both of the models. As for the NLL mod-
els, we trained 4 different models; LSTM with one and two
layers, and bidirectional LSTM with one and two layers, de-
noted as RNN, 2RNN, BI-RNN and BI-2-RNN, respectively.
Table 1 summarizes the results for both models.

Table 1. The mean loss for NLL models and DeepSegmentor
for the word segmentation task. Results are reported for the
onset, offset and overall CD separately. The loss function was
measured using (6) (with τ=0) in frames of 10ms.

RNN 2-RNN BI-RNN BI-2-RNN DeepSeg.

Onset 6.0 5.84 2.88 3.48 2.02

Offset 9.43 8.92 4.46 3.75 3.96

CD 15.42 14.76 7.35 7.24 5.98

Besides being efficient and more elegant, DeepSegmen-
tor is superior to the NLL models when measuring (6), with
the exception of BI-2-RNN, which was slightly better for the
offset measurement.

4.2. VOT Segmentation

Voice onset time (VOT) is the time between the onset of a stop
burst and the onset of voicing. As noted in the introduction,
it is widely used in theoretical and clinical studies as well as
ASR tasks. In this problem the input is a speech utterance
containing a single stop consonant, and the output is the VOT
onset and offset times.

We compared our model to two other methods for VOT
measurement. First is the AutoVOT algorithm [9]. This al-
gorithm follows the structured prediction approach of linear
classifier with hand-crafted features and feature-functions.
The second algorithm is the DeepVOT algorithm [11]. This
algorithm uses RNNs with NLL as loss function. Hence, it
predicts for each frame whether it is related to the VOT or
not. Using the RNN predictions, a dynamic programming
algorithm is applied to find the best onset and offset times.
Our approach combines both of these methods while jointly
training RNN with structured loss function.
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4.2.1. Datasets

We use two different datasets. The first one, PGWORDS,
is from a laboratory study by Paterson and Goldrick [6].
American English monolinguals and Brazilian Portuguese
(L1)-English bilinguals (24 participants each) named a set
of 144 pictures. Productions other than the intended label
as well as those with code-switching or disfluencies were
excluded. VOT of remaining words was annotated by one
transcriber.

The second dataset, BB, consists of spontaneous speech
from the 2008 season of Big Brother UK, a British reality
television show [27, 9]. The speech comes from 4 speakers
recorded in the “diary room,” an acoustically clean environ-
ment. VOTs were manually measured by two transcribers.

4.2.2. Results — PGWORDS

For the PGWORDS dataset we use two layers of bidirectional
LSTMs with dropout after each recurrent layer. We use (6)
as our loss function. The input features are the same as in
[9, 11]; overall we have 63 features per frame. We optimize
the networks using AdaGrad optimization. All parameters
were tuned on a dedicated development set. Table 2 sum-
marizes the results using the same loss function as in [9]. Re-
sults suggests that DeepSegmentor outperforms the AutoVOT
model over all tolerance values. However, when comparing to
DeepVOT, the picture is mixed. In the lower tolerance values
DeepSegmentor is superior to the DeepVOT while for higher
values DeepVOT performs better. We believe these results are
due to the DeepVOT being less delicate and solving a much
coarser problem than the DeepSegmentor ; hence, it performs
better when considering high tolerance values. We believe the
integration between these two systems, (using DeepVOT as
pre-training for the DeepSegmentor ), will yield more accu-
rate and robust results. We leave this investigation for future
work.

Table 2. Proportion of differences between automatic and
manual measures falling at or below a given tolerance value
(in msec). For example, for DeepVOT, the difference between
automatic and manual measurements in the test set was 2
msec or less in 53.8% of examples. These results are for the
PGWORDS dataset.

Model t ≤2 t ≤5 t ≤10 t ≤15 t ≤25 t ≤50

AutoVOT 49.1 81.3 93.9 96.0 97.2 98.1

DeepVOT 53.8 91.6 97.6 98.7 99.6 100

DeepSeg. 78.2 94.1 97.1 98.6 99.1 99.4

4.2.3. Results — BB

For the BB dataset we use two layers of LSTMs with dropout
after each recurrent layer. We have experiences with bidirec-
tional LSTMs as well but only forward LSTM performs better
on this dataset. We use (6) as our loss function. We use the
same features as in [9, 11], overall we have 51 features per
frame. We optimize the networks using AdaGrad optimiza-
tion. All parameters were tuned on a dedicated development
set. Table 3 summarize the results using the loss function as
in [9]. It is worth notice that we see the same behavior on this
dataset as well, regarding the DeepVOT preforms better then
the DeepSegmentor in hight tolerance values.

Table 3. Proportion of differences between automatic and
manual measures falling at or below a given tolerance value
(in msec). These results are for the BB dataset.

Model t ≤2 t ≤5 t ≤10 t ≤15 t ≤25 t ≤50

AutoVOT 59.1 80.5 89.9 94.3 96.8 98.1

DeepVOT 60.3 84.2 94.3 94.9 98.1 98.7

DeepSeg. 64.8 85.5 94.3 95.0 96.2 97.5

5. FUTURE WORK

Future work will explore timing sequence of length greater
than 2 - for instance, in phoneme segmentation, where the
sequence varies across training examples. The model’s ro-
bustness to noise and length as well as its ability to generalize
are also key areas of future development. We would there-
fore like to explore training the model in two stages: first as a
multi-class version and then fine-tuning using structured loss.
With respect to machine learning, future directions include
the effect of network size, depth, and loss function on model
performance.

6. CONCLUSION

In this paper we present a new algorithm for speech segmen-
tation and evaluate its performance to two different tasks. The
proposed algorithm combines structured loss function with
recurrent neural networks and outperforms current state-of-
the-art methods.
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