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ABSTRACT
We propose a new sparse coding technique based on the
power mean of phase-invariant cosine distances. Our ap-
proach is a generalization of sparse filtering and K-hyperlines
clustering. It offers a better sparsity enforcer than the L1/L2

norm ratio that is typically used in sparse filtering. At the
same time, the proposed approach scales better than the clus-
tering counterparts for high-dimensional input. Our algorithm
fully exploits the prior information obtained by preprocessing
the observed data with whitening via an efficient row-wise
decoupling scheme. In our simulating experiments, the algo-
rithm produces better estimates than previous approaches do.
It yields better separation of live recorded speech mixtures as
well.

Index Terms— Row-wise decoupling, cosine similarity,
blind source separation, sparse component analysis.

1. INTRODUCTION

In this paper, we focus on the problem of estimating
the complex-valued latent filters from observed data when
there are more filters than the data dimension (i.e., under-
determined mixing process or over-complete representation).
The data is assumed to follow complex-valued linear model

x[k] = As[k], k = 1, 2, . . . ,K, (1)

where x[k] = [x1[k], . . . , xM [k]]T ∈ CM×1 is the collection
of observed signals , s[k] = [s1[k], . . . , sN [k]]T ∈ CN×1 is
the collection of latent source signals, k is the sample index,
M is number of observed signals, N is number of sources,
K is the number of samples, and A = [a1, . . . ,aN ] ∈
CM×N is the mixing matrix where its jth column aj =
[a1j , . . . , aMj ]

T ∈ CM×1 denotes a latent filter.
When M = N , provided the mixing matrix is invertible,

this learning problem has been successfully addressed by in-
dependent component analysis (ICA) in which a set of di-
rections are found so that the projections of data onto these
directions are maximally non-Gaussian [1]. However, ICA is
not applicable in under-determined cases where M < N due
to the non-invertible mixing matrix.

Fortunately, natural signals such as speech in the time-
frequency domain or image in the wavelet domain are sparse
in the sense that they have only a few non-zero elements
[2, 3]. With sufficient degree of sparseness, the sources may
be approximately disjoint-orthogonal, i.e., it is likely that
there is only one dominant source at a particular sample index
[4]. For such sources, majority of the observed data will con-
centrate in directions specified by columns of A. As an exam-
ple, assuming the first source being dominant at the kth index,
we have x[k] ≈ a1s1[k] and therefore x[k] and a1 are approx-
imately collinear in complex vector space. Equivalently, the
Hermitian angle between them [5],

θH(x[k],a1) = arccos(
∣∣aH

1 x[k]
∣∣ /(‖a1‖2 ‖x[k]‖2)) (2)

is close to zero. Since scaling x[k] or a1 by an arbitrary com-
plex scalar number does not change the Hermitian angle [6],
one can recover the complex-valued latent filters by cluster-
ing the data based on the following phase-invariant cosine dis-
tance

D2(x[k], âj) = 1− cos2 θH(x[k], âj), (3)

where âj is the jth centroid. Here, the cosine squared of Her-
mitian angle is used because of its simple derivative.

By replacing the Euclidean distance with the above dis-
tance in K-means clustering, the K-hyperlines (KHL) algo-
rithm was proposed [7, 8]. In K-hyperlines, the centroids,
which form an estimation of the mixing matrix, are the (lo-
cal) minimizers of the objective function

J (KHL)(Â) = 1
K

∑K
k=1 min

j=1,...,N
D2(x[k], âj). (4)

Similar to K-means, K-hyperlines is a hard clustering algo-
rithm due to the inclusion of the minimum function inside its
cost function. This minimum function effectively partitions
the data into disjoint groups and therefore the K-hyperlines
algorithm is only optimal when the sources are perfectly dis-
joint, which is rarely the case. On the other hand, while the
soft extensions of K-hyperlines exist in literature (e.g., Gaus-
sian mixture model of line orientations [9]), solving for the
centroids via the expectation-maximization (EM) is computa-
tionally intensive due to phase-invariant property of the dis-
tance metric. In fact, the Gaussian mixture model (GMM)

2412978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



of line orientations has a cost per iteration in the order of
O(NKM2) which corresponds to the cost of calculating N
weighted covariance matrices. More importantly, since clus-
tering objectives are well-known to have local minima due
to the non-convexity of their objective functions, minimizing
them with EM scheme prevents us from using advanced opti-
mization algorithms such as the accelerated gradient methods
which are able to deal with non-convexity [10]. The main
objective of this work is to develop a smooth approximation
of K-hyperlines which produces a more accurate estimate as
well as one that can be solved efficiently by any gradient-
based algorithm.

2. PROPOSED ALGORITHM

We propose the power mean of phase-invariant cosine dis-
tance as a suitable objective function for recovering the
mixing matrix from mixtures of approximately disjoint
sources. We further improve the robustness of our algorithm
by exploiting the prior information that one obtains from
prewhitening the observed data. This is achieved via an in-
line row-wise decoupling scheme which results in a smooth
unconstrained optimization problem. As a consequence, our
algorithm can be solved by any gradient-based method.

2.1. The power mean of phase-invariant cosine distance

The power mean of order r defined by

µ(y1, y2, . . . , yN ; r) =
[

1
N

∑N
j=1 y

r
j

]1/r
(5)

is a generalization of the arithmetic mean that quantifies the
central tendency of a group of positive numbers. Its functional
value skews toward the minimum value for r < 1. In fact,
µ(y1, y2, . . . , yN ; r)→ min(y1, y2, . . . , yN ) when r → −∞
[11]. As such, it can be considered a smooth approximation
of the minimum function. Substituting the power mean into
(4) yields the following cost function

J(Â; r) = 1
K

∑K
k=1

[
1
N

∑N
j=1

(
D2(x[k], âj)

)r]1/r
. (6)

Since the power mean is increasing w.r.t. r, we have
J(Â; r) ≥ J (KHL)(Â) ≥ 0. In other words, the pro-
posed objective function is bounded below by a constant and
therefore any optimization algorithm, which guarantees to de-
crease the cost function, will eventually converge to a local
minimum.

In practice, it is common to decorrelate the observed data
with a whitening filter to facilitate the learning process [1].
Given that the sources are zero-mean and uncorrelated with
unit variance, the mixing matrix, which models the relation-
ship between the pre-whitened observed data and the sources,
is unitary when M = N and is semi-unitary when M < N ,
that is AAH = IM . Incorporating this prior information into
our objective function yields the following constrained opti-
mization problem

minÂ J(Â; r), s.t. ÂÂH = IM . (7)

Now, for each sample, we define the magnitude-squared
cosine-similarity vector f [k] where its jth component is given
by cos2 θH(x[k], âj). When the sources are approximately
disjoint, x[k] will have only N distinct directions which are
collinear to the columns of A. As a result, the columns of Â
include all directions specified by columns of the true mixing
matrix if one component of f [k] is sufficiently close to 1 for
every k. At the same time, since

∥∥∥ÂHx[k]
∥∥∥
2
= ‖x[k]‖2 for

any Â which is semi-unitary, one can show that∑N
j=1 ‖âj‖22 cos

2 θH(x[k], âj) = 1, ∀k. (8)

Intuitively, the higher the largest component of f [k], the
lower the weighted sum of the remaining components. This
implies one can reconstruct the mixing matrix up to some per-
mutation and scaling ambiguity by minimizing the sparsity-
promoting penalty of f [k], assuming each column of the mix-
ing matrix contributes a similar amount of information so that
all ‖âj‖22 are approximately equal when we are close to the
optimal solution. Indeed, the power mean of order r where
r < 1 is suitable for this purpose because it belongs to a
class of sparsity enforcing functions, namely, strictly Schur-
concave functions [12, pp. 138-139][13]. However, (8) im-
plies that the “soft” minimum of 1 − f [k] is a better sparsity
enforcer than the “soft” minimum of f [k]. In the determined
cases where M = N , since ‖âj‖22 = 1, ∀j, the effect is ap-
parent because forcing a component of f [k] to 1 will cause
all other components to vanish. In short, the power mean of
phase-invariant cosine distance under semi-unitary constraint
is suitable for learning the mixing matrix from mixtures of
disjoint sparse sources.

The optimization problem in (7) can be solved with pro-
jected gradient descent or projected quasi-Newton in which
the following constraint projection

Â← (ÂÂH)−1/2Â (9)

is applied after every parametric update. This projection will
greatly reduce the convergence rate. As a result, the idea
to solve a semi-unitary constrained problem without actually
performing the orthonormalization after each update has been
explored. In [14], this is accomplished by regularizing the
cost function with the reconstruction cost so that Â is approx-
imately semi-unitary. On the other hand, the authors of [15]
decouple each row of Â successively via the Schur comple-
ment of a matrix formed from all other rows. Both approaches
have their disadvantages, the former is inexact while the later
is order-dependent. On the contrary, by simply substituting
the constrained projection into the cost function, we introduce
an equivalent unconstrained cost

minB J((BBH)−1/2B; r) (10)

which performs the exact row-wise decoupling simultane-
ously for all rows in place. In essence, we minimize the orig-
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inal cost function w.r.t. an auxiliary matrix and then com-
pute the final solution via a single projection given in (9).
Although it is seemingly difficult to compute the gradient of
nested matrix functions, for our particular cost, we will show
that one can find its gradient efficiently from the original gra-
dient in O(MN2).

2.2. Efficient inline row-wise decoupling

Let us consider the composite cost function in the form of
J(Â; r) where Â = (BBH)−1/2B. Here, according to
Wirtinger calculus [16, 17], one should treat the argument and
its conjugate as independent variables (i.e., we consider B∗ as
a constant when deriving the derivative of J w.r.t. B and vice
versa). Moreover, the direction which yields maximal change
in the value of J w.r.t. B is [∇B∗J ]ij = 2∂J/∂b∗ij . Applying
the chain rule of matrix functions given in [17], one obtains

vec(∇B∗J) =

(DB∗Â)Tvec(∇Â∗J)
∗ + (DBÂ)Hvec(∇Â∗J), (11)

where DB∗Â = ∂vec(Â)/∂vec(B∗)T and DBÂ =

∂vec(Â)/∂vec(B)T are the Jacobian matrices of Â, and
vec(·) denotes the vectorization operator. Letting B =
UΣVH be the economy-sized singular value decomposition
(eSVD) of B, where U ∈ CM×M is unitary, Σ ∈ RM×M

>0

is diagonal, V ∈ CN×M is semi-unitary, we define several
intermediate variables given by B1 = BBH = UΣ2UH ,
B2 = B−1

1 = UΣ−2UH , B3 = B
1/2
2 = UΣ−1UH and

Â = B3B = UVH . Applying the identity d(XY) =
dX.Y + X.dY and the vectorization operator on previously
defined variables, reordering with vec(XYZ) = (ZT ⊗
X)vecY, and simplifying, we obtain

W = (Σ⊗ IM + IM ⊗Σ)−1(VH ⊗Σ−1UT ), (12)

(DBÂ)H = (IN ⊗UΣ−1UH)− (V∗Σ⊗U)W∗, (13)

(DB∗Â)T = −KNM (U⊗V∗Σ)W, (14)

where ⊗ denotes the Kronecker product and KNM is the
commutation matrix defined by KNMvecX = vec(XT ) for
any X ∈ CN×M . Here, when finding the matrix differen-
tiation of Â, we use spectral decomposition to reduce the
inversion of a generic MN -by-MN matrix to the inversion
of a diagonal matrix (Σ ⊗ IM + IM ⊗ Σ). We further
exploit the unique structure of this diagonal matrix to re-
duce the computational complexity and memory storage. In
fact, we observe for an arbitrary matrix M that (Σ ⊗ IM +
IM ⊗ Σ)−1vec(M) = vec

(
M� (1Mσ

T + σ1T
M )
)

where
σ = diag(Σ) ∈ RM×1

>0 , 1M = [1, . . . , 1]T ∈ RM×1 and �
denotes the element-wise division. Consequently, substitut-
ing (13) and (14) into (11) and then unvectorizing, we obtain

C = −(Σ−1UH(∇Â∗J)V)� (1Mσ
T + σ1T

M ), (15)

∇B∗J = U(CH + C)ΣVH + UΣ−1UH(∇Â∗J). (16)

This implies that one can replace any ∇Â∗J and obtain the
gradient of decoupled objective function ∇B∗J in O(MN2)
which is the cost of calculating eSVD of B. Since the time
complexity of evaluating ∇Â∗J from (6) is O(KMN), the
computational cost of finding ∇B∗J from ∇Â∗J is negli-
gible. Consequently, the total cost-per-iteration of our ap-
proach is O(KMN), which is asymptotically M times faster
than the soft-clustering approach. Interestingly, sparse filter-
ing (SF), a feature-learning algorithm, has a same asymptotic
cost to our proposed algorithm [18]. As we will explain, our
algorithm outperforms the sparse filtering method in estimat-
ing A under disjoint orthogonal assumption.

2.3. Connection to sparse filtering

Sparse filtering minimizes the L1/L2 norm ratio as follows

minÂ J (SF )(Â) = E
{∥∥∥ÂHx

∥∥∥
1
/
∥∥∥ÂHx

∥∥∥
2

}
. (17)

Suppose we constrained Â to be semi-unitary, the
objective function of sparse filtering is equivalent to
E
{∑N

j=1 ‖âj‖2 cos θH(x[k], âj)
}

. As oppose to our pro-
posed objective function and clustering methods, the objec-
tive of sparse filtering depends on the norm of the latent fil-
ters inside the sparsity penalty. This may lead to the degen-
eration of some columns of Â. Nevertheless, if we further
assume ‖âj‖2 ≈ 1, the sparsity penalty of sparse filtering
can be understood as the squared root of the power mean of
f [k] for r = 0.5. This sparsity enforcer is less flexible than
our method as well as not suitable for mixtures of approxi-
mately disjoint sources because it is the “soft” minimum of
f [k] rather than 1− f [k].

3. PERFROMANCE EVALUATION

We compare the performance of our proposed method (PM)
to related approaches such as KHL [7], GMM [9], and SF
[18]. Our algorithm is implemented using Nesterov accel-
erated gradient [19]. While we set r = −0.5 and use a
fixed learning rate of 1 for all experiments in this paper, these
hyper-parameters should be found via cross validation. For
GMM, its parameters are set as suggested by its authors. For
SF, we alter its original code to work with complex-valued
signals. All the algorithms share a similar preprocessing step,
initial mixing matrix, and stopping criteria. We employ the
average mixing error ratio (MER) as our performance crite-
rion [20]. Given âj be the estimation of jth column aj , the
average mixing error ratio in decibels (dB) is then defined as

MER = (20/N)
∑

j log
(∥∥acoll

j

∥∥ / ∥∥aorth
j

∥∥), (18)

where acoll
j and aorth

j are, respectively, collinear component
and orthogonal component of aj in âj . MER is computed
using the BSS EVAL toolbox1. A higher MER implies better
performance.

1http://bass-db.gforge.inria.fr/bss eval/
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Fig. 1: Average MER in estimation of 2× 4 mixing matrix w.r.t. : a) Sparseness. b) Sample size. c) Number of sources

Table 1: Output SDR and SIR in dB for 2mic 4src 5cm sub-
set of SiSEC dev1 dataset

RT60 130ms 250ms
Source 4 males 4 females 4 males 4 females

Perf. metric SDR SIR SDR SIR SDR SIR SDR SIR
PM 4.55 8.27 3.80 6.38 3.67 6.06 3.57 5.36
[22] 4.1 6.38 4.47 6.48 3.55 5.07 3.5 4.85
[9] 3.31 - 3.92 - 2.62 - 3.49 -

Input -4.81 -4.60 -4.76 -4.68 -4.79 -4.64 -4.83 -4.71

In each simulation, we report the average performance of
100 trials. New sources and a mixing matrix are created ran-
domly for each trial. The real part and the imaginary part of
the mixing matrix are generated independently with standard
normal distribution. The sources are drawn according to com-
plex generalized Gaussian distribution f(s) ∝ exp(− |s|p)
where p is the shape parameter [21]. The smaller the shape
parameter is, the sparser the source. The default values of
the sample size and the shape parameter are respectively
K = 103 and p = 0.2. Figs.˜1(a) and (b) illustrate the perfor-
mance of estimating 2× 4 mixing matrix w.r.t. the sparseness
of the sources and sample size. The performance w.r.t. to
the number of sources is shown in Fig.˜1(c), given the num-
ber of observed signals is 2. One can see that our proposed
algorithm outperforms all its peers in most cases.

To evaluate our algorithm w.r.t. real-world data, we con-
sider the problem of separating convolutively mixed speeches,
i.e., xi(t) =

∑N
j=1(aij ∗ sj)(t) where aij(t) denotes the un-

known impulse response between the ith microphone and the
jth source. Using short-time Fourier transform (STFT) with
an appropriate choice of window length [23], one can convert
the convolutive mixing process in time domain to complex-
valued mixing process in time-frequency domain as

x(τ, f) ≈ A(f)s(τ, f). (19)

Following the current state-of-the-art systems given in [9, 22],
we estimate Â(f) at each bin separately with our method then
compute the following soft-mask

M(j, τ, f) =
exp(β cos2 θH(x(τ, f), âj(f)))

exp(β
∑

l cos
2 θH(x(τ, f), âl(f)))

, (20)

where β > 0 is a predefined constant which controls the soft-
ness of the mask. We introduce the above soft-mask since
it yields less distortion in the reconstructed speeches com-
pared to traditional binary masking. Next, the source index of
the mask is properly reordered across the frequency-bin using
multi-band permutation alignment [24]. Finally, we extract
the sources via time-frequency masking and inverse STFT.

We compare our method with [9] and [22] on dev1 dataset
of the Signal Separation Evaluation Campaign (SiSEC) [20].
This dataset contains 16 mixing scenarios of speech signals.
In each scenarios, two recordings of three or four people
speaking are recorded in an actual room environment using
two microphones 5 cm or 1 m apart. The room reverberation
time is either 130 ms or 250 ms. We measure the performance
of signal separation using signal distortion ratio (SDR) and
signal interference ratio (SIR) [25]. We set β = 12.5 and use
the same STFT parameters with [9]. Table 1 contains the sep-
aration results on 4 most challenging scenarios of SiSEC dev1
dataset2. In this subset, while our method and [22] have the
same average SDR of 3.9 dB, the average SIR of our method
is 6.5 dB compared to 5.7 dB of the algorithm proposed in
[22]. For all 16 mixing scenarios, in comparison to [22], our
algorithm yields 0.18 dB improvement in average SDR (5.55
dB vs. 5.37 dB) and 1.67 dB improvement in SIR (9.65 dB vs.
7.98 dB). Interestingly, our proposed method requires at most
one minute on a typical Intel i7 (3.4 Ghz) machine for any
multi-channel mixture in SiSEC datasets while the method in
[22] requires up to one hour on an Intel i5 (3.4 Ghz) machine.

4. CONCLUSIONS

We presented an inline decoupling sparse coding technique
for mixing matrix estimation. The algorithm combines the
benefits of clustering approach and sparse filtering approach
by exchanging the L1/L2 norm ratio in sparse filtering with
the power mean of phase-invariant cosine distance. Experi-
ments on simulated data and real data show promising results.

2The SIR values of [22] are retrieved from https://sisec.wiki.irisa.fr/
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