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ABSTRACT

Discriminative least squares regression (DLSR) is a simple yet
effective method for multi-class classification. One problem of DL-
SR is that it is lack of robustness to outliers. In order to tackle this
difficulty, in this paper, we propose a novel Robust DLSR (RoDLSR)
model. The core idea behind RoDLSR is to find and further ignore
the outliers among the support vector set. Specifically, we modify
the regression targets of outliers by adding an additional item. As a
result, the range of regression residuals can be controlled within pre-
defined threshold. Extensive experiments evaluate the effectiveness
of RoDLSR, especially on the corrupted databases.

Index Terms— LSR, DLSR, Robust, Robust DLSR (RoDLSR),
Support Vector

1. INTRODUCTION

Least squares regression (LSR) is widely adapted to statistical
analysis. It matches the best function for the data by minimizing
the square of error. Given a data set {xi}ni=1 ∈ Rd and a target set
{yi}ni=1 ∈ Rc, LSR can be define as

min
W,b

n∑
i=1

‖WTxi + b− yi‖22 + β‖W‖2F (1)

where W ∈ Rd×c and b ∈ Rc are to be estimated and the parameter
β is a regularization parameter.

As above compact form and efficient achievement, LSR insti-
tutes its fundamental status in data processing and classification.
And there are many derivatives of LSR which can be divided in-
to two categories. One is revising the loss function, such as lo-
gistic regression (LR) [1], LASSO [2], ridge regression [3], SVM
with the hinge loss [4], SVM with the square hinge loss [5], least
squares(LS)SVM [6], [7], [8]. Above mentioned methods are binary
classification models, so we adopt one-against-one, one-against-rest
or ECOC [9] strategy and combine the independent obtained models
for the multi-category classification. The other category is trans-
forming the regression targets. The typical instances are recently
proposed discriminative LSR (DLSR) [10], retargeted LSR (ReLSR)
[11] and margin scalable DLSR (MSDLSR) [12] where ReLSR and
MSDLSR are both based on DLSR. DLSR introduces a technique
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called ε-dragging to dislodge the regression targets towards oppo-
site direction, for extending the interval between different classes.
What’s more, DLSR can tackle multi-category classification under a
compact model. And experiment results testify DLSR performance
better than traditional regression methods and SVM-based methods
especially under the presence of sufficient training data.

However, DLSR is lack of robustness to the outliers and noises,
which are common in realistic situation due to objective and subjec-
tive factors. The outliers can produce large residuals, which exert
critical effects on the estimate of regression parameters. The ulti-
mate regression results will stray from the correct one. The studies
for robust regression sustain to develop well. The classical method
is M-estimation [13] introduced by Huber, whose core idea is se-
lecting suitable weight function to attach corresponding weight co-
efficient to every residual and minimizing the weighted residual sum
of squares. Least trimmed squares(LTS) [14] and S-estimation [15]
are other viable robust regression method. Besides above measures,
we can replace the normal distribution with a heavy-tailed distribu-
tion,such as Bayesian robust regression [16]. However, when above
mentioned robust approaches are applied to DLSR. we will obtain
multiple models that are independent of each other. The computa-
tion process is complicated and the effects cannot satisfy our expec-
tations, which demonstrates the above solutions don’t suit for it.

In this paper, we propose a novel model called RobustDLSR
(RoDLSR) to accomplish the robust regression. According to the
exploration and comparison to the loss function of LSR and DLSR,
we expect to formulate a unified and compact model to control the
range of residuals. This paper utilizes positive slack variable εi in
DLSR to find the outliers, and attaches an additional item to the re-
gression targets of outliers, which assures residuals are below a pre-
defined value and weaken the effects from the outliers. The propose
approach is validated extensively on several datasets.

The outline of this paper is organized as follows. Section 2 gives
a brief about DLSR and its variations. Section 3 mainly introduces
the robust model proposed in this paper and its optimization solu-
tion. Section 4 exhibits the comparable and satisfying experimental
results. Section 5 summarizes the core idea and discusses the further
improvement of our method to conclude this paper.

2. DLSR AND ITS VARIATIONS

Some previous work impels us to build the novel robust model
proposed in this paper. In order to solve multi-category classification
simultaneously and extend the distance between different classes for
a more effective classification. Xiang et. al [10] proposed a discrim-
inative LSR(DLSR) model. DLSR makes class label vectors to be
the regression targets and introduces a technique called ε-dragging
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Fig. 1. Comparisons of the loss functions. From left to right are loss functions of LSR, DLSR and the proposed RoDLSR, respectively. For
the loss function of RoDLSR, the thresholding value τ is set to be a value of 2.

to enlarge the distance between different class label vectors. That is
to say, we assume the right class label as 1 and the wrong class label
as−1, and then the ε-dragging transforms the element +1 to 1+ ε ,
and transforms the element −1 to −1− ε in the class label vectors.

DLSR achieves better performance than other method in multi-
category classification. Due to the compact form and effective so-
lution, some new regression method based on DLSR was suggest-
ed. Zhang et. al [11] proposed a retargeted LSR (ReDLSR) model
and Wang et. al [12] proposed margin scalable discriminative LSR
(MSDLSR). ReLSR directly learns the regression targets from data
and makes the margin between the targets of true and false classes
larger than one. So it is much more accurate in measuring the clas-
sification error of the regression model than DLSR. In the paper of
MSDLSR, the author proved the DLSR is a relaxation of the tradi-
tional L2-support vector machine and the data with dragging values
as 0 are the support vector set of DLSR. Based on these discovery,
MSDLSR restricts the number of zeros of dragging values by setting
a constraint on DLSR to control the margin of DLSR.

ReLSR and MSDLSR both appreciate the superiority of DLSR
and refer to the strategy of modifying the regression targets from
DLSR, but they neither add the robustness to DLSR. Popular ro-
bust regression methods such as M-estimation [13] and LTS [14] are
too complex to integrate themselves into the DLSR. So we abandon
existing robust algorithm and explore a novel concise robust model
called Robust DLSR (RoDLSR) by modifying the regression targets
based on DLSR and MSDLSR.

3. METHOD

Given n training samples {(xi, yi)}ni=1 divided into c categories,
where xi ∈ Rd×1 denotes a data point and yi ∈ {1, 2, . . . , c} is the
class label of xi. In order to embed the class label information into
the formulation and process multi-class classification simultaneous-
ly, we denotes a c dimension vector fyi as the regression target for
the data xi, where the yith element is 1 and the other element is−1.
For example, the class label yi is j for the data point xi belonging to
the jth category, so the regression target was denoted as

fyi = [−1, . . . ,−1, 1,−1, . . . ,−1]T ∈ Rc

with only the jth element equal to one. Let X = [x1,x2, . . . ,xn]
T ∈

Rn×d store the n data points, and Y = [fy1 , fy2 , . . . , fyn ]
T ∈ Rn×c

record their labels. In the following, we first briefly review DLSR
model. And then, we describe our RoDLSR model in detail.

3.1. DLSR

Focusing on extending the distance between different categories
to enhance the classification accuracy, DLSR trains a ε-dragging ma-
trix attached to the original regression target Y. Assume B ∈ Rn×c

be a constant matrix with the ij-th element Bij defined as

Bij =

{
+1 ,if yi = j,

−1 ,otherwise

With the constant matrix B, DLSR model is

min
W,b,M

‖XW + enb
T −Y −B�M‖2F + β‖W‖2F

s.t. M ≥ 0 (2)

where W is a transformation matrix in Rd×c, b is a translation vec-
tor in Rc and en = [1, 1, . . . , 1]T ∈ Rn is a vector whose all ele-
ments are one. � is a Hadamard product operator of matrices.

As interpreted in [10], every element of the matrix B indicates
the dragging direction for the corresponding element in matrix Y
and its value is the same as the matrix Y. The nonnegative matrix
M = {εij ≥ 0} ∈ Rn×c records the value of ε-dragging obtained
in learning process.Ultimately, the target matrix of DLSR is trans-
formed to T = Y +B�M.

3.2. RoDLSR

In [12], Wang et al. have proved that DLSR is a relaxation of
L2-SVM, and the support vector set of DLSR is composed of the
samples with dragging values being 0. Hence, DLSR model can
select support vectors iteratively by minimizing Eqn. (2). Unfortu-
nately, DLSR does not robust to outlier. To solve this problem, we
propose the following RoDLSR model, which is defined as

min
W,b,M,K

‖XW + enb
T −Y −Y �M+ S� (τY +Y �K)‖2F

+β‖W‖2F
s.t. M ≥ 0, K ≥ 0 (3)

where τ is the predefined threshold (τ = 2 used in this paper), which
is used to identify data outliers. Matrix S ∈ Rn×c is the selection
matrix, and K ∈ Rn×c is the outlier indication matrix, which is
also learned in the optimization process. Specifically, the selection
matrix S is defined as

S = C�D, (4)

where C ∈ Rn×c and D ∈ Rn×c are also selection matrices, which
are defined as

Cij =

{
1, Mi,j = 0,

0, otherwise
, Dij =

{
0, Ki,j = 0,

1, otherwise
. (5)

As illustrated in Eqn. (5), the matrix C is to judge whether a sample
is the support vector (or to select support vectors), while the matrix
D is to judge whether a sample is the outlier (or to select outliers).

Compared with DLSR model, the proposed RoDLSR model in-
troduces the new term S� (τY+Y�K) for the regression target.
In this term, the matrix S is utilized to select the samples which are
support vectors and outliers. After selecting this samples, we add
additional label values τY+Y�K, as a result, the regression loss-
es for these samples are 0. Hence, the proposed RoDLSR model can
be robust to the outliers.
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3.3. Optimization of RoDLSR Model

The proposed RoDLSR model in Eqn. (3) is a minimized convex
quadratic function subjected to two linear constraints. Hence, it is
capable to utilize an iterative alternating optimization to acquire the
solution with the following three steps.

STEP 1: Given M and K, and let R = Y + Y �M − S �
(τY +Y �K) ∈ Rn×c, the problem of Eqn. (3) can be converted
to the classical LSR problem:

min
W,b
‖XW + enb

T −R‖2F + β‖W‖2F . (6)

The optimal solution can be consulted as

W = (XTHX+ βId)
−1XTHR, b =

(R−XW)T en

n
, (7)

where H = In −
ene

T
n

n
, In is a n × n identity matrix and Id is a

d× d identity matrix.
STEP 2: Given W, b and K, the calculation of the matrix M

is similar with that in DLSR model. Denote P = XW + enb
T −

Y − S� (τY +Y �K) ∈ Rn×c, the solution of M is

M = max(Y �P, 0). (8)

The more information about the derivation of Eqn.(8) has been dis-
cussed in [10]. Please refer to this paper for details.

STEP 3: Given W, b and M, and let Q = XW+enb
T −Y,

then, the optimal K in Eqn. (3) can be calculated by

K = max((−Y)�Q− τ, 0). (9)

Note that, with the selection matrix S, we need only consider the
support vectors or the samples with Mij = 0.

Proof: Due to the squared Frobenius norm in RoDLSR model in
Eqn. (3), we can process the calculation of K element by element.
For the ij-th element Kij in the outlier matrix K, we have

min
Kij

(Qij + τYij +YijKij)
2, s.t. Kij ≥ 0. (10)

Since Y2
ij = 1, we have (Qij +Yijτ +YijKij)

2 = (YijQij +

τ +Kij)
2. Combining with the nonnegative constraint of the matrix

K or Kij ≥ 0, we can obtain Kij by

Kij = max(−YijQij − τ, 0). (11)

Hence, we prove the optimal solution in Eqn. (9).

3.4. Discussion

In this subsection, we further discuss how and why the element
Kij can determine whether a sample is a outlier. As shown in Eqn.
(9), we get following conclusions:

• if Kij = 0, and under condition that Yij = 1 and Mij = 0,
we can get that −τ < Pij < 0.

• if Kij = 0, and under condition that Yij = −1 and Mij =
0, we can get that 0 < Pij < τ .

To sum up, when Kij = 0 and Mij = 0, the residual of correspond
data is within the predefined threshold parameter τ . Therefore, we
can select the outliers by D (related to the matrix K). It worth noting
that we can select the support vector set according to C (related to
the matrix M). The comparisons of the loss functions about DLSR
and RoDLSR are illustrated in Fig. 1 in detail.

Table 1. Brief description of the data sets.

4. EXPERIMENT

In this section, we evaluate the superiority of RoDLSR model by
comparing it with the other six multi-category classification models
on different error rates for 10 databases. In the following, we first
introduce the datasets for evaluation. And then, we explain the s-
election of parameters in our experiment. Finally, we present the
comparable experimental results and analysis.

4.1. Data sets

Nine machine learning databases are utilized in our experiments
for evaluating proposed method as [12]. Table 1 introduces the in-
formation of these data sets. The first five data sets (Iris, Svmguide2,
Vehicle, Glass and Vowel) are downloaded from the LIBSVM ma-
chine learning data repository. The Coil20 dataset is used in image
classification (face, object, and digit). The last three datasets (Cora-
OS, WebKB-CL and WebKB-WC) are widely adopted for informa-
tion extraction and retrieval.

4.2. Comparison Methods and Parameter Settings

Our method is compared with six multi-category classification
methods, including traditional LSR, recent DLSR, L1-SVM with
hinge loss, L2-SVM with squared hinge loss, logistic regression (L-
R), and Multiclass SVM (MC-SVM) with multiclass hinge loss. We
utilize LIBLINEAR Software 1 to implement the comparative meth-
ods, includingL1-SVM,L2-SVM, LR and MC-SVM. ForL1-SVM,
L2-SVM, LR and MC-SVM, the major regularization parameter C
is selected by cross validation, and the candidate set of cross valida-
tion is {10−3, 10−2, 10−1, 1, 101, 102}.

From RoDLSR model, shown in Eqn. (3), we need determine
two parameters β and τ . The parameter β is defined as

β = β̂
1

d
tr(XTHX), (12)

where tr(·) is the trace of a matrix, and the parameter β̂ will be se-
lected by cross validation from [0, 1] whose step is 0.1 to make sure
the best possible result. The same approach is utilized to select the
regularization parameter β for LSR and DLSR . Moreover, we fix
the threshold parameter τ as 2 for all the datasets.

1The software is available at www.csie.ntu.edu.tw/∼cjlin/liblinear.
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Fig. 2. Comparative results. The title of each subgraph denotes the data set utilized. And the legend of 0, 0.05, 0.1, 0.15, 0.2, 0.3 in the right
side presents the error ratio of the datasets. X axis indicates all the classification method in experiment.

4.3. Results

Based on the determined parameters, we evaluate all the models
on the databases. Each dataset is randomly partitioned into the train-
ing and testing parts for 10 times (the training data set contains 40%
samples, and the rest ones are used for testing). To evaluate the ro-
bustness of all models, we pollute {0%, 5%, 10%, 15%, 20%, 30%}
of the training samples, respectively.

As shown in Fig. 2, it’s obvious that the average accuracies
of every method for all the datasets descend with the increase of
error ratio. Provided any error ratio, the quantity of the data sets
getting the best accuracy with RoDLSR model is significantly more
than with other methods. Besides, with the increase of error rate,
the classification accuracy of RoDLSR model is higher than other
SVM-based method for almost data sets, especially Coil20, Glass
Vowel and Vehicle, WebKB-WC and WebKB-CL. In these datasets,
although the RoDLSR performs inferior to other method under low
error ratio, RoDLSR still surpass other methods under the higher
error ratio, especially for the datasets Glass, Coil20 and Vehicle.

Compared with DLSR, RoDLSR improves the performances of
DLSR, which are significantly obvious in the data sets Iris and Vow-

el. In these two datasets, the classification accuracies of RoDLSR
over DLSR even achieve up to 7%. It’s verified that superiority of
RoDLSR ascend with the rise of error rate for the data sets Iris, Vehi-
cle and Vowel. These experimental results indicates the effectiveness
of RoDLSR for the robust problem.

5. CONCLUSION AND DISCUSSION

In this paper, we propose a simple yet effective RoDLSR model
for robust multi-category classification. The core idea behind this
model is to control the range of residuals by introducing the outlier
term into the original DLSR model. Experimental results evaluate
the superiority of RoDLSR in the data sets with outlier samples a-
gainst the state-of-the-art approaches.

In the future, we will extend RoDLSR model to kernel version
by introducing kernel methods [17]. In kernel method, the original
feature vector is replaced by the higher dimensional feature vector
with nonlinear mapping functions. Same with DLSR, by introduc-
ing matrix ‖ · ‖2,1 (refer to [10] for details) norm for the regression
matrix W, the proposed RoDLSR model can also be used to perform
feature selection task, which will be another future work.
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