
FLOW BASED BOTNET DETECTION THROUGH SEMI-SUPERVISED ACTIVE LEARNING

Zhicong Qiu, David J. Miller and George Kesidis

School of Electrical Engineering and Computer Science,
The Pennsylvania State University,

University Park, PA 16802

ABSTRACT
In a variety of Network-based Intrusion Detection System
(NIDS) applications, one desires to detect groups of unknown
attack (e.g., botnet) packet-flows, with a group potentially
manifesting its atypicality (relative to a known reference
“normal”/null model) on a low-dimensional subset of the
full measured set of features used by the IDS. What makes
this anomaly detection problem quite challenging is that it
is a priori unknown which (possibly sparse) subset of fea-
tures jointly characterizes a particular application, especially
one that has not been seen before, which thus represents an
unknown behavioral class (zero-day threat). Moreover, nowa-
days botnets have become evasive, evolving their behavior to
avoid signature-based IDSes. In this work, we apply a novel
active learning (AL) framework for botnet detection, facil-
itating detection of unknown botnets (assuming no ground
truth examples of same). We propose a new anomaly-based
feature set that captures the informative features and exploits
the sequence of packet directions in a given flow. Experi-
ments on real world network traffic data, including several
common Zeus botnet instances, demonstrate the advantage of
our proposed features and AL system.

Index Terms— active learning, anomaly detection, bot-
net, maximum entropy, p-value, semisupervised learning

1. INTRODUCTION

Detecting botnet communication presents a major challenge
for current IDSes. Most coordinated bot malware is used to
carry out malicious activities such as DDoS, spamming, and
phishing, with huge cost to the victims. One recent survey
[1] claimed that around 16% of host computers connected to
the Internet today are compromised, becoming either active
or passive bots, waiting to follow the bot master’s commands.
One of the most difficult challenges associated with detect-
ing botnet communication is that both bot masters and slaves
constantly modify their behavior to evade popular signature-
based IDSes. For example, in order to avoid deep packet in-
spection based IDSes, botnet applications use secure trans-
mission protocol (STP) to encrypt their command and control
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(C&C) messages. Recent botnets also use fast flux to ran-
domize both their port numbers and/or domain names, thus
avoiding anomaly detectors that are based on usage of certain
port numbers or domain names, such as [2]. To avoid timing
based signatures, botnets try to randomly delay their trans-
missions or make their traffic round-trip-times (RTTs) simi-
lar to perceived “normal” sessions subject to very low imple-
mentation complexity. On the other hand, the ever-evolving
internetwork context requires an adaptive IDS to quickly re-
spond to the ever changing states of distributed botnets, which
are sometimes driven by context information not immediately
available to IDSes.

In this work, we propose an AL framework to detect
unknown botnet behavior, using only bidirectional packet
sizes of a given flow to derive application-discriminating
features. In our AL approach, the network administrator
is leveraged as an “oracle” to inform the IDS which AL-
forwarded network flows are suspicious (botnets) and which
are known normal (e.g., web). Oracle decisions may be based
on payload patterns, similarity to previously detected botnet
flows, information from honeynets, etc. We propose a novel,
anomaly-based, time-independent derived feature set that
captures anomalies both in the packet direction sequence and
in the sequence of packet sizes in a given flow. We improve
upon a recent novel AL approach to learn the (potentially
sparse) informative feature subset, starting from no ground
truth about the botnet traffic. We compare our approach with
the baseline flow-based feature representation from [3] and
[4] as well as with the feature representation and approach in
[5], and show our approach gives the best performance.

2. METHODOLOGY

2.1. Feature Space Representation

To capture the intrinsic behavior of botnet traffic, we note
that in the C&C phase (communication between Bot masters
and slaves for coordination or attacks), most botnet traffic
involves master(s) periodically giving command (control)
messages, with the slaves executing the given commands.
Normal/background web traffic, on the other hand, tends to
involve server-to-client communication. In the attack phase,
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botnet malware carries out malicious activity, periodically
sending out beacon signals to the bot master via the previ-
ously established C&C channel, most of the time without
packet transmissions from the bot master to bot slaves.

Hence, we seek to preserve the bidirectional packet size
sequence information as feature representation for different
traffic flows. Such a feature representation was previously
considered in [6] and [7]. The authors used the first N (we
set N = 10 in our experiments) packets after the three-way
hand shake of each TCP flow. Then a feature vector of di-
mension D = 2N was defined, specified by the sizes and
directionalities of these N packets. Traffic is assumed to be
alternating between client-to-server (CS) and server-to-client
(SC). A zero packet size is thus inserted between two con-
secutive packets in the same direction to indicate an absence
of a packet in the other direction. Here, we improve on the
representations used in [6] and [7].

2.2. Anomaly Based Derived Features

As we discussed previously, both the presence of packets
in given directions and the sizes of packets should be infor-
mative in identifying botnet traffic. We accordingly define
a set of anomalous scores to quantify such. Considering
the previously defined D-dimensional feature vector x =
(x1, x2, . . . , xD)T , we use I(x) = (I(x1), . . . , I(xD))T ,
with I(x) = 1 if x > 0 and 0 otherwise, a binary vector, to
specify the packet direction sequence. To reduce the number
of parameters needed to model the joint distribution for I(x),
we propose to model I(x) based on the Chow-Liu Bayesian
Network variant [8]. Here, the joint distribution for a vec-
tor of discrete-valued random variables is the model which
maximizes the likelihood over the training data under the
constraint that the distribution factors as a product of first
and second-order probabilities. Hence, based on this special
Bayesian Network structure, P [I(x)] factorizes as:

P [I(xj1)]P [I(xj2)|I(xj1)] . . . P [I(xjD )|I(xjD−1
)],

where j1 denotes the root node index of the learned Bayesian
Network. To simplify notation in the sequel, we will use Ij to
denote I(xj).

The maximum a posteriori estimates of the probabilities
are obtained from frequency counts. For all estimates, we
added 1 in the numerator to avoid assigning 0 probabilities.

That is, P [Ij = 1] =
N+

j +1

Tl+2 , with N+
j representing the num-

ber of web-flows belonging to the flow training set Xl with
positive packet size in the jth position, and Tl = |Xl|. Sim-
ilarly, P [Ij |Im] =

P [Ij ,Im]
P [Im] , with P [Ij = 1, Im = 1] =

N++
jm +1

Tl+4 and N++
jm representing the number of training web

flows that have positive packet size in the {j,m} position pair.

Similarly, P [Ij = 0, Im = 1] =
N0+

jm+1

Tl+4 , P [Ij = 1, Im =

0] =
N+0

jm+1

Tl+4 , and P [Ij = 0, Im = 0] =
N00

jm+1

Tl+4 . Note that

P [I(x)] is a product of D unweighted probabilities, giving
an (unweighted) aggregate anomaly score over the D dimen-
sions, for the packet direction sequence. We will exploit the
low-order constituent probabilities of P [I(x)] to obtain de-
rived features for input to our classifier.

Next, for all single features and all pairs of features, con-
sidering only the positive entries (non-zero packet sizes), we
propose to model these continuous distributions using Gaus-
sian Mixture Models (GMMs), and use both first and sec-
ond order mixture p-values [5] to quantify the flow anoma-
lies with respect to independently learned GMMs for each
individual and pairwise feature pair. Following the develop-
ment in [5], given a second order mixture null, the p-value –
the probability that a two-dimensional feature vector will be
more extreme than the given observed vector y = (xi, xj) – is

p+ij(y) =
Kij∑
k=1

P [M = k|y]e−r
2
k(y)/2. Here, the mixture pos-

terior is P [M = k|y] =
αkfY |k(y|θk)

Kij∑
m=1

αmfY |m(y|θm)

and r2k(y) is the

squared Mahalanobis distance between y and µ
k
, with fY |k

denoting the pdf of the kth GM component.
Note that p+ij(y) is the expected p-value, with the expec-

tation taken with respect to the mixture posterior pmf. In a
similar fashion, one can also calculate a set of mixture-based
p-values for single (univariate) features, denoted {p+i (xi), i =
1 . . . , D}. In this case, complementary error functions are
used to measure the p-value conditioned on each mixture
component, with the mixture-based p-value again the ex-
pected p-value. Based on the Bayesian Network probabilities
and the collection of GMM null distributions, we can com-
pute the vector of derived p-value based features for each
flow from the raw features (x, I(x)).

Let us define pi(xi) and pij(y) the following way:

pi(xi) =

{
p+i (xi) Ii = 1

1 else
, pij(y) =

{
p+ij(y) Ii = 1, Ij = 1

1 else
.

We then have the derived feature vector z,

z = (P [Il1 ], P [Ilk |Ilk−1
], pi(xi), pij(y) :

∀i, j, k, 1 < k ≤ D, 1 ≤ i < j ≤ D) ∈ (0, 1]2D+(D
2).

2.3. Classification Model, Learning Objective, and Active
Learning Strategy

The classifier model is a variant of a logistic regression model,
which uses logs of the entries of the derived p-value based fea-
ture vector z and with non-negative constraints on the weights
on these features. For the cth class, let

f(z;β(c)) = exp(β
(c)
0 −

2D+(D
2)∑

i=1

β
(c)
i log z(i)),
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where the model parameters for the cth class are {β(c)
i , i =

0, . . . , 2D +
(
D
2

)
}. Using ω2, ω1, and ω0 to respectively de-

note the known botnet, the known normal, and the unknown
class (which represents the union of all “unknown unknown”
classes, i.e., those that have not yet been discovered or la-
beled), we then have:

P (Ω = ωc|z) =
f(z;β(c))∑
c′ f(z;β(c′))

(1)

with β(c)
i ≥ 0,∀i > 0, c = 0, 1, 2.

The inclusion of ω0 allows for the possibility that there are
unknown classes in a test data batch, beyond a botnet class
(ω2) that has already been discovered (for which there are la-
beled flow examples). Note also that (1) is for the case of one
normal class and one known botnet class. This can of course
be generalized if there are multiple known botnet classes.
Moreover, initially in our scenario, there are no known botnet
classes, i.e., ω2 is only instantiated once a sample from a
botnet class is selected and actively labeled.

The non-negatively constrained logistic regression model
has been shown to produce a highly sparse solution, with only
“informative features” having non-zero weights [5].

Let us assume at the tth oracle labeling we have a set of la-
beled samples Z(t)

l ∈ RT
(t)
l ×(2D+(D

2)), with associated labels

C
(t)
l and unlabeled samples Z(t)

u ∈ RT
(t)
u ×(2D+(D

2)), with no
ground truth. Using Q to denote the uniform distribution on
{ω0, ω1, ω2} if a sample from class ω2 has already been la-
beled, and to denote the uniform distribution {ω0, ω1} other-
wise, i.e.,{

Q = {qω0
, qω1

, qω2
} = { 13 ,

1
3 ,

1
3} if ω2 ∈ C(t)

l

Q = {qω0
, qω1
} = { 12 ,

1
2} otherwise.

(2)

Our AL-based, semisupervised, regularized negative poste-
rior log-likelihood learning objective, where we use novel
maximum entropy regularization on the unlabeled sample sub-
set [5], is:

J (t)
maxEnt = −

∑
(z,c)∈(Z(t)

l ,C
(t)
l )

α(t)
c logP [Ω = ωc|z]

+γ
∑
z∈Z(t)

u

d((Q||P [Ω|z]). (3)

Here, in minimizing (3), we aim to maximize the class pos-
terior log-likelihood on the labeled samples, but also to max-
imize the class uncertainty of the posterior on the unlabeled
samples, where d(Q||P ) =

∑
c qclog(qc/pc), the Kullback-

Leibler distance [9] (cross entropy) between probability mass
functions Q = {qc} and P = {pc}. Compared to the pre-
viously proposed minimum entropy regularization approach
[10], which minimizes decision uncertainty on unlabeled
samples, (3) avoids over-training, especially when the rare

category (botnet) is underrepresented, i.e., during the early
stages of AL [5]. Moreover, by maximizing class entropy on
unlabeled samples, unknown clusters (with no labeled sam-
ples) will have high class uncertainty, hence facilitating AL
identification of unknown unknowns (zero-day threats).

The proposed learning objective (3) is a convex objective
function, with a unique global minimum, unlike [10] and [5].
Also, unlike [5], we distinguish rare and unknown-unknown
in this paper, primarily to preserve convexity. We optimize (3)
via projected gradient descent, which is guaranteed to reach
the global minimum due to the objective’s convexity. α(t)

c is
chosen to balance the effective sample size between the two
classes, whereas γ is chosen via cross validation (CV). When

there is not enough botnet traffic for CV, γ is set to T
(t)
l

T
(t)
u

.
Finally, we use pool-based AL, wherein the oracle ground-

truth labels the informative samples from the unlabeled batch
sequentially forwarded by the learner. We use the best AL
strategy proposed in [5] – most likely unknown (MLU) sam-
pling – to pick the unlabeled sample that has the highest
probability of belonging to the unknown class, as evaluated
by P (Ω = ω0|z). Alternatively, mixed strategies may be con-
sidered in future work (that balance unknown class discovery
with classification accuracy).

3. EXPERIMENTAL SETUP AND RESULTS

The overall AL system is illustrated in Fig. 1. We obtained

Fig. 1: The overall AL system architecture.

normal traffic from LBNL traces [11], which were based on
monitoring a medium-size enterprise network with more than
100 hours of web activities, covering 22 subnets. Specifically,
the experiments in this paper are based on the same three
PCAP files as used in previous work [7]. Zeus bots are well-
known for their detection evasion techniques such as random-
ization of proxy servers and/or port numbers, which make
them very difficult to detect; Zeus variants have become the
most popular botnet application on the Internet today, espe-
cially for cybercrime activities [12]. We obtained Zeus PCAP
files from [13] and [14]. Both C&C and non C&C traffic are
combined and used in our experimentation. In Table 1, the
sample sizes of these web and botnet traffic traces are shown.
All traffic uses TCP as the transport protocol. We would like
to use as much flow information as possible in making clas-
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sification decisions. Since more than 90% of the TCP flows
have no less than 10 packets after the three-way handshake,
we use the first 10 packets from each flow after the three-way
handshake.

Table 1: Normal web and botnet flow sizes.

Application Number of Flows Used
LBNL Web [11] 9972
VRT Zeus [13] 64
ISOT Zeus [14] 23

3.1. Performance Metrics

For botnet anomaly detection, we are interested in the fol-
lowing generalization performance criteria. One is sensitiv-
ity: the ratio of botnet flows that are classified as truly botnet;
the other is specificity: the ratio of web flows that are falsely
classified as botnet flows. To give a comprehensive trade-off
between the sensitivity and specificity, we use ROC AUC as
the generalization measure on the test batch, in all of our ex-
periments. The ROC AUC is calculated as a function of the
number of active labelings.

3.2. Experimental Results

One third of the normal batch is first randomly subsampled
without replacement from the whole normal batch and used
to train the Bayesian Network and all the marginal and pair-
wise packet size GMMs. The derived feature vector z is
then obtained for each flow sample. Half of the remaining
two thirds of the normal traffic are treated as unlabeled and
combined with half of the unlabeled botnet traffic for active
learning (semisuperived AL training), and the remaining sam-
ples are used for testing (measuring generalization perfor-
mance). Generalization performance is averaged over 5 ran-
dom training-test splits.

We are interested in the effectiveness of the proposed p-
value based feature vector, compared with alternative feature
representations. Besides performance using the raw fea-
tures (x, I(x)), we also compare with popular derived flow-
based features for network traffic classification. Through a
correlation-based filtering process, [3] identified 8 among
the 248 flow based features described in [15] as highly dis-
criminative for different network flows. [4] additionally used
IP-ratio and goodput in their experiment. We denote this
feature set as CSET’11. Since the botnet applications are
from different domains than the web traffic, we only use the
time-independent features from [4], i.e., RTT-samples and
goodput are not used. Also compared is the feature repre-
sentation proposed in [5], i.e., without the use of a Bayesian
Network to capture presence/absence features for packets,
but using GMM based p-values. We denote this feature set as
TNNLS’16.
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Fig. 2: Comparison of different feature representations, with
bars indicating one standard deviation.

In Fig. 2, we compare different feature representations,
using MLU as the AL sample selection strategy. As expected,
the proposed feature set greatly outperforms the CSET’11
feature set, as well as greatly outperforming the feature set
proposed in [5] for general-purpose anomaly detection.This is
because in [4], the absence of a data packet in a given direc-
tion is ignored; however, this information is seen to be highly
discriminative between web and Zeus. Moreover, while the
ROC AUC curves are flat for some methods, this does not
mean the classifier is not improving with more oracle label-
ings – e.g., the test set error rate curves tend to be decreasing.

The proposed maxEnt model (3) produces a highly
sparse solution, e.g., for VRT Zeus, 95.2% of the {β(2)

i , i =

1, . . . , 2D+
(
D
2

)
} are zero by the fiftieth AL iteration, essen-

tially eliminating the effects of these (uninformative) features.
Additional experimental results are reported in [16].

4. DISCUSSION OF DETECTION EVASION

By using the proposed feature representation, several com-
mon botnet evasion schemes become ineffective. For exam-
ple, the random back-off presented in [17] can be completely
overcome simply by ignoring (as above) timing-based fea-
tures such as goodput or RTT, see [4]. Also, encryption of
data packets will not affect performance using the proposed
feature representation as it only requires packet-size infor-
mation of the bidirectional TCP flows. Obviously, random-
ization of port numbers and domain names (fast flux) would
also be ineffective since these features are not used. How-
ever, flow “perturbation” or “noise injection” [17], can signif-
icantly impact the performance of our system. For example, if
the intruder has detailed knowledge of the normal traffic pat-
terns at the detection point, then they can adaptively groom
their bidirectional packet-size sequence to defeat a detection
scheme predominantly based on such features. But such eva-
sion techniques have significant overhead and require packet-
traffic telemetry that may not be available to the bot slaves or
master end-hosts. Hence, evasion is possible but may have
very high implementation complexity and require adaptation
overhead leading to less covert malware [17].
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