
A NOVEL LAYERWISE PRUNING METHOD FOR MODEL REDUCTION OF FULLY

CONNECTED DEEP NEURAL NETWORKS

Lukas Mauch and Bin Yang

Institute of Signal Processing and System Theory, University of Stuttgart, Germany

ABSTRACT

Deep neural networks (DNN) are powerful models for many

pattern recognition tasks, yet they tend to have many layers

and many neurons resulting in a high computational complex-

ity. This limits their application to high-performance comput-

ing platforms. In order to evaluate a trained DNN on a lower-

performance computing platform like a mobile or embedded

device, model reduction techniques which shrink the network

size and reduce the number of parameters without consider-

able performance degradation performance are highly desir-

able. In this paper, we start with a trained fully connected

DNN and show how to reduce the network complexity by a

novel layerwise pruning method. We show that if some neu-

rons are pruned and the remaining parameters (weights and

biases) are adapted correspondingly to correct the errors in-

troduced by pruning, the model reduction can be done almost

without performance loss. The main contribution of our prun-

ing method is a closed-form solution that only makes use of

the first and second order moments of the layer outputs and,

therefore, only needs unlabeled data. Using three benchmark

datasets, we compare our pruning method with the low-rank

approximation approach.

Index Terms— Deep neural networks, model reduction,

pruning, parameter adaptation

1. INTRODUCTION

Deep neural networks (DNN) are the state of the art method

for many machine learning tasks such as image recognition,

segmentation and natural language processing [1, 2]. How-

ever, evaluating a trained DNN is computationally demand-

ing if the network is very deep and consists of layers with

many neurons. Therefore, DNNs are limited to applications

with enough computational power and memory. They are not

suitable for mobile and embedded devices.

Both the ability of a DNN to learn an arbitrary nonlinear

relationship and its computational complexity depend on the

depth of the network and the width of its layers [3, 4]. A

DNN with many parameters allows for learning an arbitrary

complex transfer function, but is computationally expensive.

Using a shallow DNN with a few narrow layers reduces the

computational complexity, but also limits the achievable com-

plexity of the transfer function [5]. There is no theory today

how to choose the most efficient DNN structure, i.e. a DNN

with a minimum number of layers and neurons while allow-

ing for a transfer function that is complex enough to solve a

given task.

In practice, very deep networks with a huge number of pa-

rameters are favoured because they can solve a broad class of

tasks with high accuracy [6, 7]. However, most likely the cho-

sen DNN structure has much more parameters than needed

and a model with less parameters could solve the task with

the same accuracy. To obtain an efficient DNN, we could op-

timize the DNN structure during training, e.g. by varying the

number of layers and neurons. But this leads to a difficult

combinatorial optimization problem. Another possibility is

to start with a trained model with many parameters and try to

reduce the number of parameters after training without reduc-

ing the accuracy. This technique is called model reduction.

There are two different approaches for model reduction.

Some previous works used low-rank approximations of the

weight matrices [8]. We call this the factorization approach.

Other works reduced the number of parameters by removing

(pruning) some neurons [9, 10]. This approach is called prun-

ing. These works focused on how to select the neurons to be

pruned since this selection is also a combinatorial optimiza-

tion problem and therefore hard to solve. But they did not

discuss how to adapt the remaining parameters after pruning.

There are three different setups for model reduction: a)

We only know the trained model but have no training data.

Only structures in the weight matrices can be used for model

reduction. All model reduction methods described above fall

into this category. b) We know the trained model and have ad-

ditional unlabeled data. Therefore, we can exploit the correla-

tions in the network outputs to reduce the network. Both (fac-

torization and pruning) approaches can also be applied here.

However, there are currently no investigations in this direc-

tion. c) We know the trained model and have labeled training

data. In this case, methods from a) or b) can be used for ini-

tialization of the network and supervised fine-tuning with the

labeled training data can be used to further increase the accu-

racy of the network.

This paper deals with case b). The idea is that some of the

neurons with strongly correlated activations can be removed.

By exploiting these correlations, the weights and biases for
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the remaining neurons can be adapted in order to get nearly

the same transfer function of the network. In this work, we

derive a closed-form solution to this problem. To do so, we

solve the pruning problem for each layer separately and use

the least squares (LS) criterion to minimize the difference be-

tween the activation of the pruned and the full layers.

2. PRUNING OF NETWORK

2.1. Fully connected DNN

We consider pruning of fully connected DNNs as shown in

Fig. 1. The transfer function x
L
= f (x0, θ) of the DNN con-

sisting of L layers of weights 1 is defined by a sequence of

nonlinear transformations

x
l
= Φl

(

a
l

)

, 1 ≤ l ≤ L (1)

a
l
= Wlxl−1

+ b
l

(2)

with the activation a
l
∈ RMl , the weight matrix Wl ∈ R

Ml×Ml−1 ,

the bias vector b
l
∈ RMl and the nonlinear activation function

Φl(·) which is applied elementwise to a
l
. Layer l has Ml neu-

rons. The parameter vector of the DNN is θ and contains all

elements of Wl and b
l
, 1 ≤ l ≤ L.

x
0

x1 x
l

x
L

W1, b1
Wl, bl

WL, bL

Fig. 1. Parametrization of a fully connected DNN

In supervised learning, the parameter vector θ is estimated

by minimizing a cost function

θ̂ = arg min
θ

J({x
0
(n)}, {y(n)}, θ), (3)

where {y(n)}, 1 ≤ n ≤ N is a sequence of reference samples

y(n) ∈ RML for the network output. For DNN-based classifi-

cation, {y(n)} contains the correct class labels for a given input

sequence {x
0
(n)} and the negative log-likelihood or the cross-

entropy can be used for J({x
0
(n)}, {y(n)}, θ) [4]. For DNN-

based regression, y(n) represents the desired signal and the LS

criterion is often used. Below we refer to such a trained fully

connected network as the "full" network and derive methods

to reduce the number of parameters in θ̂ without considerable

performance degradation.

2.2. Problem formulation

Pruning a trained network means to delete some of its neu-

rons. This is visualized in Fig. 2 for layer l. The layer of the

full network with parameters Wl and b
l

is shown on the left,

while the pruned layer is given on the right. Some elements

1This corresponds to L − 1 hidden layers of neurons.

of the input vector x
l−1

of layer l (i.e. the corresponding neu-

rons in layer l − 1) are deleted and do not contribute to the

activation ã
l

on the right. The transfer function of the pruned

network becomes

x̃
l
= Φl

(

ã
l

)

, 1 ≤ l ≤ L (4)

ã
l
= W̃lPl x̃l−1

+ b̃
l
, (5)

where Pl ∈ R
M

p

l−1
×Ml−1 (M

p

l−1
< Ml−1) is a selection matrix

selecting M
p

l−1
elements from x̃

l−1
∈ RMl−1 . Each row of Pl

has zero elements but one entry equal to one and all rows

of Pl are orthogonal. The weight matrix of the pruned layer

W̃l ∈ R
Ml×M

p

l−1 has only M
p

l−1
columns. Therefore, we only

need Ml M
p

l−1
multiplications instead of Ml Ml−1.

Wl W̃l

bl b̃l

Pl

x
l−

1

x
l

x
l−

1

x̃
l
=

x
l
+
ǫ

l

pruning

Fig. 2. Pruning of a fully connected network layer

A naive approach to select W̃l would be

W̃l =WlP
T
l . (6)

This means, we simply delete all columns in Wl correspond-

ing to the pruned elements in x̃
l−1 without changing the other

elements of Wl. This is done in all pruning and dropout meth-

ods up to now. This naive pruning introduces the error

ǫ
l
= ã

l
− a

l
(7)

to the activation of the pruned layer and the DNN perfor-

mance will most likely decrease. In order to get nearly the

same performance as with the full network, we have to adjust

W̃l and b̃
l
such to minimize the mean squared error (MSE)

MSEl = E
[

||ǫ
l
||2

]

(8)

in each layer. The intuition tells us that if the pruned neurons

are correlated with some remaining neurons in the same layer,

we should be able to use the remaining neurons and adapted

W̃l and b̃
l
to minimize the difference between ã

l
and a

l
.

We use a set of N unlabeled training samples X =

{x
0
(1), . . . , x

0
(N)} to calculate MSEl. Then we minimize

N
∑

n=1

||ã
l
(n)− a

l
(n)||2 =

N
∑

n=1

||W̃lPl x̃l−1
(n)+ b̃

l
−Wl xl−1

(n)− b
l
||2

(9)

over W̃l and b̃
l
. Here, we make two assumptions to sim-

plify the model reduction problem. First, we assume that Pl

is given and independent of W̃l and b̃
l
. Second, we do not

adjust W̃l and b̃
l

of different layers jointly, as this would re-

sult in a nonlinear LS problem due to the nonlinear activation
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functions Φl. Instead, we adjust W̃l and b̃
l

layerwise by as-

suming x̃
l−1 = x

l−1 in Eq. 9, starting with the first layer l = 1.

The cost function in Eq. 9 then simplifies to

min
W̃l,b̃l

N
∑

n=1

||(W̃lPl −Wl)x
l−1

(n) + b̃
l
− b

l
||2. (10)

2.3. Closed-form solution

Setting the derivative of the cost function in Eq. 10 with re-

spect to b̃
l
to zero leads to

b̃
l
= b

l
+ (Wl − W̃lPl)µ

l−1
, (11)

where

µ
l−1
=

1

N

N
∑

n=1

x
l−1

(n) (12)

is the sample mean of the input of full layer l. This means, b̃
l

is obtained by adding a correction term to b
l

which is equal

to the difference between the mean output of the full layer l

and the pruned layer l. Inserting Eq. 11 into Eq. 10 further

simplifies the cost function to

N
∑

n=1

||(W̃lPl −Wl)(x
l−1(n) − µ

l−1
)||2. (13)

The solution W̃l minimizing it is given by

W̃l =WlCl−1PT
l

[

PlCl−1PT
l

]−1
, (14)

where

Cl−1 =
1

N

N
∑

n=1

(x
l−1

(n) − µ
l−1

)(x
l−1

(n) − µ
l−1

)T (15)

is the sample covariance matrix of x
l−1

.

If Cl−1 is the identity matrix, i.e. all elements of x
l−1

are

uncorrelated with equal variance, Eq. 14 reduces to W̃l =

WlP
T
l

, the naive selection in Eq. 6. In this case, the infor-

mation loss due to pruning of some elements in x
l−1

can not

be recovered from the other uncorrelated elements of x
l−1

and

the best we can do for Wl is doing nothing. If, however, the

elements of x
l−1 are correlated, the pruning of some elements

of x
l−1

makes an adaption of Wl and b
l

necessary in order to

recover the activation a
l

of layer l as good as possible.

2.4. Selection strategy

Let αl ∈ (0, 1) be the reduction factor for layer l, i.e. we

delete round(αlMl−1) elements of x
l−1 and M

p

l−1
= Ml−1 −

round(αlMl−1). For simplicity, we consider a constant reduc-

tion factor αl = α for all layers. The number of multiplica-

tions for layer l is then reduced from Ml Ml−1 to M
p

l
Ml−1.

The best way to select Pl is to minimize MSEl in Eq. 8.

However, optimization with respect to Pl is a combinatorial

optimization problem which is hard to solve. Due to limited

space, we are not going to discuss different suboptimal selec-

tion strategies and their impact to model reduction. This will

be done in a future publication. This paper considers the two

easiest selection strategies: a) select round(αMl−1) elements

of x
l−1

to be pruned at random for a given reduction factor

α like dropout [11], b) choose Pl to minimize Eq.10 for the

naive case (naive selection), i.e. we keep all elements of x
l−1

with the largest diagonal elements in Cl−1. In both cases, the

selection is done independently for all layers.

2.5. Network reduction with low rank approximation

We compare our pruning method with model reduction based

on low-rank approximation of the weight matrices. First, each

Wl of the trained DNN undergoes a singular value decompo-

sition (SVD)

Wl = UlΣlV
T
l ∈ R

Ml×Ml−1 . (16)

Then we approximate Wl by a low-rank matrix W̃l =

Ul,Kl
Σl,Kl

VT
l,Kl

, where Ul,Kl
∈ RMl×Kl and Vl,Kl

∈ RMl−1×Kl

are matrices containing the Kl left and right singular vectors

belonging to the Kl largest singular values λ1, ..., λKl
of Wl

and Σl,Kl
= diag(λ1, ..., λKl

). The number of multiplications is

then reduced from Ml−1 Ml for Wl xl−1
to Kl Ml−1 + Kl + Kl Ml

for Ul,Kl
Σl,Kl

VT
l,Kl

x
l−1

. In order to achieve the same reduction

factor α as previously, we choose

Kl = round

(

(1 − α)
Ml−1Ml

Ml−1 + Ml + 1

)

. (17)

We do not reduce the last layer (KL = min(ML,ML−1)), since

it has already low rank and reducing it will result in large

reduction errors.

3. EXPERIMENTS

We evaluate our pruning method on the MNIST, SVHN and

NORB datasets [12, 13, 14] for different reduction factors α

and compare it to the low-rank approximation. All experi-

ments are done using Theano [15] and Keras [16]. The first

two tasks are digit recognition and the last task deals with

image classification. The goal of these experiments is not to

present the best DNN for a particular task, but rather to com-

pare the classification performance between the full DNN and

that after pruning or low-rank approximation. Hence, the used

full DNN is not the most sophisticated one.

For simplicity, we use a full DNN with L = 6 layers of

weights for all 3 tasks. The 5 hidden layers of neurons have

the same number of 2500,2000,1500,1000 and 500 hidden

neurons for all 3 tasks, while the width of the layers changes

for each task depending on the number of input features and
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output classes (M0 = 784/3072/9216 and ML = 10/10/5 for

MNIST/SVHN/NORB). For all layers except for the last one,

we used the rectifier linear unit as the activation function of

the hidden layers and a softmax output layer. We trained the

networks using rmsprop as optimizer using a learning rate of

0.003.

The full networks are trained on a fraction of the dataset.

They are then reduced and their accuracy is compared to the

full networks using a holdout testset. We compare four meth-

ods of model reduction: a) low-rank approximation as de-

scribed in section 2.5, b) naive pruning assuming Cl−1 = I,

c) our pruning method by exploiting the correlations of the

neuron outputs, using random selection of Pl, d) our pruning

method, using the naive selection of Pl.

Fig. 3 shows the classification accuracy of the 3 tasks for

both the full DNN and the 4 pruned networks for a reduction

factor 0.1 ≤ α ≤ 0.8. We first compare the performance of

the 3 full networks. Clearly, the MNIST dataset receives the

highest accuracy of 97% while the SVHN and NORB dataset

achieve an accuracy of 82% and 84%, respectively. This is

easy to understand because MNIST contains clean, portrait

oriented grayscale digits while SVHN contains noisy, arbi-

trary oriented coloured digits. Since the 3 full DNNs have the

same depth and layer widths (except for the input and output

layer), the full DNN for MNIST is almost optimum while the

other two full DNNs can be further improved. Nevertheless,

all 3 full DNNs are over dimensioned and can be shrinked by

model reduction techniques.

Now we compare the performance of the full DNNs and

their pruned ones. Though the effect of model reduction

varies from task to task, there are some common observations

in Fig. 3. Naive pruning, i.e. delete some neurons in each

layer without weight adaptation, degrades the network per-

formance early. In the simple SVHN task, a reduction factor

of 40% reduced the network accuracy by more than 10%

and a reduction factor of 55% achieved only an accuracy of

about 60%. For NORB, the performance degradation is even

more serious. The reason is that naive pruning changes the

activation of the remaining layers.

In contrast, our pruning method with a layerwise weight

and bias adaptation shows excellent results in all 3 tasks. In

the MNIST task, there is almost no performance degrada-

tion, even for a pruning factor of 80%. This demonstrates

that the full DNN for this task is highly redundant and over-

dimensioned. For the other two more challenging tasks, there

is a certain accuracy degradation for high pruning factors

(α ≥ 50% for SVHN and α ≥ 70% for NORB). Our pruning

method shows comparable results to low-rank approxima-

tion, even surpassing it in case of MNIST, meaning that using

weight adaptation is mandatory for a good network reduc-

tion. Although, there still remains a small performance gap

between pruning and low-rank approximation in the case

of SVHN and NORB. This is due to the random selection

strategy in section 2.4. Using the naive selection strategy

already helps to close this gap in case of SVHN. Therefore,

we believe that by using a better selection strategy and/or by

using a fine-tuning learning with some labeled data, pruning

will show better peformance than low-rank approximation

in almost any case, and that the pruned network can almost

achieve the original performance of the full network. This

will be addressed in a future work.
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our pruning m ethod with random  select ion

low-rank approxim at ion

our pruning m ethod with naive select ion

Fig. 3. Comparison of 4 model reduction methods

4. CONCLUSION

We presented a novel model reduction method for a trained

fully connected DNN to reduce its computational complexity

and memory consumption. It makes use of the mean and co-

variance matrix of the output of each layer and, hence, needs

only unlabeled data. By exploiting the correlations of neurons

in a layer, we derived a closed-form solution for the adapta-

tion of the weights and biases of the remaining neurons in

order to recover the original activations as good as possible.

In three classification experiments, our method significantly

outperforms the low-rank approximation and shows the same

or a comparable accuracy as the full network for a reduction

factor up to 70%.
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