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ABSTRACT

Recognizing and localizing a recurring pattern is a problem
with a variety of applications such as classification and local-
ization of home appliances from their activation signals and
estimating the relative alignment between records of a natural
repetitive electrocardiography (ECG) signals in Bio-medical
data. Most common approaches for recognizing a recurring
pattern are generative and focus on discovering and capturing
the characteristics of the recurring pattern. One limitation of
such generative approaches is that they are more sensitive to
variations of the recurring signal. In this paper, we present
a discriminative approach for finding a recurring pattern and
localizing it within a collection of signals. We evaluate and
compare our method to a generative approach [1] on both syn-
thetic data and real-world home appliance data.

Index Terms— Discriminative pattern recognition, recur-
ring signal detection, signal localization.

1. INTRODUCTION

Due to rapid data growth we are facing nowadays, the capa-
bility to recognize recurring patterns in data becomes increas-
ingly important because it helps to find regularities in data and
can be used for downstream data analysis tasks such as feature
extraction and classification. A common goal in this context
is to discover recurrent patterns from data without any prior
knowledge of what the patterns might look like. Toward this
goal, several approaches have been proposed recently, most
of which focused on finding the fundamental characteristics
of the signal pattern [2, 3, 4, 5] and are generative in nature.
By contrast, limited work has considered a discriminative ap-
proach for this task. One important issue with generative ap-
proaches of discovering recurring pattern is that the detection
performance significantly degrades with increased noise and
variations of the recurring signal. To address this issue, we fo-
cus on the problem of finding a discriminative convolutional
kernel of the unknown recurring pattern, such that the result-
ing signal will directly indicate the location of the pattern.
The problem of discovering convolutional kernel of recurring
unknown pattern has been less studied.

This work is partially supported by the National Science Foundation
grants CCF-1254218, DBI-1356792 and IIS-1055113.

In this paper, we propose a probabilistic model and pro-
vide a systematic solution for detecting the recurring signal
pattern. Our contributions are as follows: (i) We introduce a
novel formulation of auto-detecting recurring signal patterns;
(ii) We provide a maximum likelihood estimation (MLE) so-
lution for finding the discriminative convolutional kernel; and
(iii) We show an increased detection performance on a real-
world home appliance data.

The rest of the paper is organized as follows. Section 2
provides the formulation of the discriminative recurring pat-
tern recognition. Section 3 proposes a probabilistic model to
the problem. Section 4 provides a maximum likelihood esti-
mation approach for solving the aforementioned probabilistic
model. Section 5 and 6 empirically examine the proposed ap-
proach and compare with the generative approach using both
synthetic and real-world dataset. Section 7 concludes the pa-
per.

2. PROBLEM FORMULATION

We are given a collection of signals and their labels {(x1, Y1),
(x2, Y2) . . . , (xM , YM )}, where xm denotes the mth signal
xm(t) for 1 ≤ t ≤ Tm and Ym ∈ {0, 1} denotes the pres-
ence or absence of an arbitrarily time-delayed pattern within
signal xm. Our goal is to develop a discriminative framework
for training a detector based on the given training data that
can detect presence or absence of an unknown recurring pat-
tern in a test signal. In contrast to the classical time delay
estimation, we do not assume that the patterns within differ-
ent signals are identical or identical up to a scaling factor. A
generative model for detecting a recurring pattern [1] aims
at finding the pattern and its corresponding delay as shown
in Fig. 1(a). A discriminative approach uses a convolution
kernel to predict the presence and absence of that pattern as
shown in Fig. 1(b). Unlike the generative approach, the dis-
criminative kernel does not resemble the original shape of that
recurring pattern, but transforms the original signal data into
a new signal that matches up with the signal label. Here, we
focus on the latter.

To predict the presence or absence of the common pat-
tern, we consider a sliding window of size T0 and treat the
signal segment within each window as an instance. Specifi-
cally, we associate xm(t), the mth signal at location t, with
a corresponding sequence ymt ∈ {0, 1}. The instance label
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ymt being equal to 1 indicates the presence of a pattern at lo-
cation t in xm. The sequence of instance labels for xm, which
we denote by ym , [ym1, . . . , ymTm

], directly determines the
bag-level label Ym. Specifically, if ym contains any entry with
value 1, then Ym is 1; otherwise, Ym is zero.
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Fig. 1: Problem formulation of generative and discriminative
recurring pattern recognition

3. THE PROBABILISTIC MODEL

In developing our model, we focus on a special case of the
problem in which a single observance of the pattern of in-
terest is made in each signal. Consequently, we assume that
although the signal the instance label sequence ym are not
observed, we have the information that ym is either a vector
with all zero entries or a vector with all zero entries except
a single nonzero entry taking value 1. For completeness, we
express themth signal label Ym in terms of the corresponding
instance label sequence ym as

Ym =


0, ym = 0

1, ym ∈ {em1, . . . , emTm
}

2, otherwise,

where Tm is the number of sliding window segments in xm,
and eml = [0, . . . , 0, 1, 0, . . . , 0]T ∈ RTm , ∀l = 1, . . . , Tm
is the lth standard basis vector of RTm , i.e., its lth entry is
one, and all other entries are zeros. Note that Ym = 2 is only
used for ensuring a complete probabilistic characterization of
the model. However, in our setting, it is never observed.

We employ a probabilistic model (shown in Fig. 2) with a
logistic function to model the conditional distribution of an in-
stance label ymt given a realization of the corresponding slid-
ing window segment xmt = [xm(t),xm(t− 1), . . . ,xm(t−
T0 + 1)]T ∈ RT0 as the tth windowed instance and w =
[w(1), . . . ,w(T0)]T ∈ RT0 as the kernel signal. Therefore,
the probabilistic model for ymt is given by:

xmt ymt
T

M

Ym

w

Fig. 2: The probabilistic graphical model

P (ymt|xmt;w) =
ew

Txmtymt

1 + ewTxmt
. (1)

Note that wTxmt for all t = 1, . . . , Tm and m = 1, . . . ,M
are implemented as a convolution such that wTxmt =∑T0

τ=0 xm(t− τ)w(τ).
To model the mth signal label Ym given the instance la-

bels ym, we consider two cases. When the signal label is pos-
itive Ym = 1, only one out of Tm instance label can be one
and the others are zeros. When the signal label is negative
Ym = 0, all of the Tm instances must be zeros. Therefore, the
probabilistic model for the signal label Ym given the instance
labels ym is:

P (Ym|ym) = [

Tm∑
l=1

I(ym = eml)]
Ym [I(ym = 0)]1−Ym , (2)

The probabilistic graphical model in Fig. 2 describes the con-
ditional dependence structure of our model.

3.1. Extension to 2-D signals
When the data signal is 2-D such as spectrogram i.e.,xm ∈
RF×T for some frequency F , the probabilistic model in (1)
can be smoothly adopted by setting the convolutive kernel
to be 2-D as well, i.e.,w ∈ RF×T0 . In this case, wTxmt
is replaced with trace(wTxmt) =

∑F
f=1

∑T0

τ=0 xm(f, t −
τ)w(f, τ).

4. MAXIMUM LIKELIHOOD ESTIMATION

Given our proposed model, we consider estimating the model
parameter w using maximum likelihood estimation (MLE).

4.1. Data Likelihood
Denote D = {(x1, Y1), (x2, Y2) . . . , (xM , YM )} as the ob-
served data and assume that Ym ∈ {0, 1}, the data likelihood
L(w) = P (D;w), is obtained as

L(w) =

M∏
m=1

(
∑Tm

l=1 e
wTxml)Ym∏Tm

t=1(1 + ewTxmt)
P (xm). (3)

Therefore, the negative log-likelihood function is:

f(w) =

M∑
m=1

[

Tm∑
t=1

log(1 + ew
Txmt)− Ym log(

Tm∑
t=1

ew
Txmt)] + C,

where C =
∑M
m=1 log(P (xm)) is a constant. The chal-

lenge is this function is a combination of convex and concave
function such that the non-convexity of the problem makes it
harder to minimize.

4.2. Solution with CCCP
Since the objective is a convex-concave function, we ap-
ply the convex-concave procedure (CCCP) [6] to update
w. The general idea is to construct a majorizing function
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g(w,wi) such that (i) g(w,wi) ≥ f(w) for any w,wi; and
(ii) g(w,wi) = f(w) for w = wi. Minimizing g(w,wi)
function instead of f(w) results in the following update rule
w(i+1) = arg minw g(w,wi), which yields non increasing
sequence of the objective, i.e., f(w(i+1)) ≤ f(wi).

A simple upper bound function g(w,wi) can be obtained
by linearizing the convex function v(w) = log(

∑T
t=1 e

wTxmt).
Since v(w) ≥ v(wi) + (w − wi)T∆v(wi), then f(w) ≤
g(w,wi) [7]. Therefore, the upper bound g(w,wi) is:

g(w,wi) =

M∑
m=1

[

Tm∑
t=1

log(1 + ew
Txmt)− Ym[log(

Tm∑
t=1

ew
iTxmt)

+
(∑Tm

t=1 e
wiTxmtxmt∑Tm

t=1 e
wiTxmt

)T
(w −wi)].

Using the gradient descent method, we obtain the update rule
as follows:

wi+1 =wi + γ
∂g(w,wi)

∂w
|w=wi ,where, (4)

∂g(w,wi)

∂w
|w=wi =

M∑
m=1

Tm∑
t=1

[P (ymt)− YmP (ymt|Ym)]xmt,

and γ is a learning rate. We refer to P (ymt) = P (ymt =
1|xmt;wi) in (1) as a prior probability and P (ymt|Y ) =

P (ymt = 1|Y,x;wi) = ew
iT xmt∑Tm

t=1 e
wiT xmt

as a posterior proba-

bility, which can also be directly computed using Bayes rule.
Prediction: Given a test signal xtest, the localization signal
or instance label signal ŷtest

t is obtained by

ŷtest
t = arg max

a∈{0,1}
P (yt = a|xtest,w) ∀ t = 1, . . . T.

A signal level label is obtained by

Ŷ test = ∪Tt=1ŷ
test
t .

4.3. Computational complexity
To simplify the computational complexity analysis, assume
that the number of instance per signal Tm are all the same
and equal to T . The overall computational complexity is
O(NMTT0), whereN is the total number of iteration needed
for updating the kernel w. If T0 is set to be large (T0 ≈ T ), we
can apply Fast Fourier Transform (FFT) and Inverse of FFT
to speed up the convolution [8] such that the computational
complexity will become O(NMT log T ).

5. NUMERICAL EVALUATION

In order to evaluate our discriminative pattern recognition ap-
proach, we perform a numerical synthetic experiment.

5.1. Synthetic data generation
The synthetic 2-D signals are generated with height (number
of frequency bins) F = 10 and width (time frames) T = 50
by randomly placing a rectangular shape into one of the T −6
maximally overlapped 10 × 7 windows of the signals. Each

window is referred as an instance and is labeled as 1 if the
rectangular shape is within that window, otherwise, it will be
labeled as 0, the negative class. See Fig.3 (a) for an example.
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Fig. 3: Synthetic data results

5.2. Numerical results
To verify our proposed approach, we use 10 independent ran-
dom shuffles of 200 signals with balanced label that are split
into 160 training signals and 40 test signals. The convolution
kernel dimensions are set to F = 10 and T0 = 7. Fig. 3(c)
shows the original rectangular shape, while Fig. 3(d) shows
the learned kernel, which appears to approximate the gradi-
ent of the rectangular shape. Fig. 3(f) verifies that the posi-
tion where the rectangular signal lies is correctly predicted,
however, using the original signal pattern in the generative
framework yields some ambiguity about the shape location
(see Fig. 3(e)). To show the resulting detection performance,
we plot the receiver operating characteristic (ROC) curve [9].
The averaged test ROC curves based on the 10 different train-
ing sets are shown in Fig. 3(b). We can see that using a dis-
criminative kernel produces higher true positive rate when the
threshold is low.

6. REAL-WORLD EXPERIMENT

In this experiment, our goal is to learn a discriminative acti-
vation signature for each appliance using a set of training data
and to test the detection performance on a separate test data
set.
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6.1. Data Set and preprocessing
We use the Pecan Street dataset (Source: Pecan Street Re-
search Institute), which contains four homes of disaggre-
gated, time-sampled electricity usage data. The data set in-
cludes both voltage and apparent power readings in a period
of 25 days. For the experimental setup, we split the four home
data into training data with extracted activation signature with
1000 samples of a period of 11/17/2012-11/25/2012 and
test data is one hour readings, which contains around 500, 000
samples, with a period of 11/26/2012-12/11/2012. For each
home and each appliance, the training activation event of
short sequence voltage responses are generated based on the
ground truth of a power increase from 0 to 80 watt or more
on the independent measurement from a commercial power
meter. The negative labeled data of short sequence voltage
responses are randomly extracted based on non-increase of
the power meter.

Due to a time varying DC offset on voltage peak to peak
(Vpp) value, we consider a moving window (each window
contains 1000 samples) approach to calculate the average DC
offset signal. For both training and test data, we remove that
DC offset. We also apply a five-tap median filter to despike
the voltage waveforms, since the voltage peak to peak (Vpp)
waveform is corrupted by spike noise. For home ps-029, we
use a fifteen-tap median filter.

6.2. Results and Analysis
In the training phase, we tune the window size T0 using ten
random shuffles of the data. On each of the ten, we first
shuffle and then pick the first 80% of the data for training and
the remaining 20% for validation. For each random shuffle,
we compute the signal label accuracy 1/M

∑M
m=1 I(Ŷ val

m =
Y val
m ) for T0 ∈ {100, 300, 500, 700, 900, 1500, 2000} and

present mean and standard deviation (over the ten shuffles) as
in Fig. 4(b). An iterative gradient descent method is used to
find the discriminative activation signature. To compare with
the results obtained from a generative approach [1], we show
a detection example from the generative approach and the
discriminative approach in the Fig. 4. Since [1] uses T0=700,
we show the resulting AUCs comparison with our approach
by using both T0=700 and best window size in the Table 1.

Fig. 4(c) shows an example for the detector output (be-
fore applying the threshold) for the generative detector. We
observe that the peak level of the discriminative detector out-
put in Fig. 4(d) appears more consistent than that of the gen-
erative detector. In general, we observe that the discrimina-
tive approach presents higher detection performance than the
generative approach, especially for some of the appliances
which contains more variation in their template. For example,
for oven in home ps-025 and Fridge in ps-046, the detection
AUCs of the discriminative approach are 0.86 and 0.87 re-
spectively, which are significantly higher than the generative
approach AUCs, 0.52 and 0.49 respectively.

Discussion on computational complexity: In a gener-
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Fig. 4: Detection comparison between generative and dis-
criminative fridge activation patterns.

House ID App. Name Gen.(T0=700) Disc.(T0=700) Disc.(best T0)
PS-025 Air-Cond. 0.95 0.97 0.97 T0=700
PS-025 Oven 0.52 0.80 0.86 T0=100
PS-029 Air-Cond. 0.92 0.99 0.99 T0=700
PS-029 Dryer 0.99 0.93 0.96 T0=100
PS-029 Fridge 0.72 0.85 0.86 T0=900
PS-029 Furnace 0.86 0.89 0.89 T0=700
PS-029 Microwave 0.88 0.94 0.94 T0=700
PS-029 Oven 0.91 0.78 0.88 T0=100
PS-046 Air-Cond. 0.85 0.93 0.97 T0=500
PS-046 Fridge 0.49 0.85 0.87 T0=900
PS-046 Furnace 0.54 0.56 0.56 T0=700
PS-046 Oven 0.92 0.76 0.88 T0=100
PS-051 Air-Cond. 0.91 0.97 0.97 T0=700
PS-051 Oven 0.78 0.61 0.72 T0=100

Table 1: AUC for the generative method [1] and for our dis-
criminative method.

ative approach, [1] proposes an algorithm of computational
complexity ofO(T0(MT )2). In our discriminative approach,
the computational complexity is O(NMTT0). If the total
number of iteration N is set to be less than MT , our discrim-
inative approach is more efficient.

7. CONCLUSION

In this paper, we proposed a discriminative recurring pattern
recognition model and provided an MLE solution approach.
We first evaluated our proposed approach on a synthetic data
and then we compared our discriminative approach with the
generative approach on a real-world appliance voltage data.
The results indicated that the discriminative approach are bet-
ter at localizing the appliance activation patterns and more
robust to their template variations. The resulting detection
AUCs are higher than the AUCs of the generative approach
on a large number of cases.

Acknowledgment: We would like to thank the Pecan Street
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dataset used in this paper.
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