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ABSTRACT

The problem of inferring the hidden state of individual
nodes in social/sensor networks in which node activities af-
fect their neighbors is growing in importance. We present
an undirected generative model, a type of probabilistic model
that has so far not been used for modeling latent variables in-
fluenced by neighbors in a network. We also propose an effi-
cient inference method based on variational inference princi-
ples which, in contrast to sampling methods used in most ex-
isting models, is scalable to larger networks. While training is
intractable in general, by using stochastic methods to approx-
imate the intractable derivative, we show that our model can
be trained using the maximum likelihood method by formu-
lating the model as an exponential family distribution. The
results demonstrate that the proposed undirected model can
accurately infer latent states compared to baseline methods.

Index Terms— Network influence, latent sentiments, fac-
tor models, exponential family, stochastic gradient methods.

1. INTRODUCTION

Modern networks (e.g., online social networks) routinely gen-
erate large amount of signals/data, and computationally effi-
cient methods are essential to analyze and understand these
datasets. The temporal evolution of data in these networks is
often influenced by their neighbors. Furthermore, there can
be hidden states or latent sentiments that are not observable
[1, 2, 3]. For example, a sensor may update its belief regard-
ing a hidden state depending on the measurements of other
sensors, or users in an online social network may change their
political biases depending on their neighbors’ postings but
they may not wish to express these changes explicitly. The
activities or observations of the agents in a network may in
turn depend on their latent sentiment or hidden state [4]. Such
phenomena call for modeling networked agents using proba-
bilistic models in which an agent’s latent/hidden state is cou-
pled to the observed activities of its neighbors.
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We assume that observed data are in the form of ‘counts’
(e.g., the number of postings of a certain category or num-
ber of infected people in a contact network). Hidden states
are taken as discrete variables. While various types of hidden
variable models abound, their application to networked set-
tings brings up special challenges. With directed models [5],
inference using exact methods such as those used in Hidden
Markov Models (HMMs) becomes intractable when hidden
states are coupled across a network. Coupled HMMs, such as
the model proposed in [6], where the latent state probabilities
are obtained by sampling can be computationally expensive in
larger networks. While one can model the neighbor influence
by changing the direction of dependency of observations of a
HMM as in [7], due to normalization of the transition proba-
bilities at each time step, such a strategy can suffer from label
bias [8]. An extension of an HMM which uses neighbor ac-
tivities as an input was presented in [4], where a threshold
determines how the neighbors’ actions affect the latent vari-
ables. [4] has limitations with estimating the thresholds and
generalizing to handle an arbitrary number of hidden states.

We address these limitations via an undirected generative
model. To the best of our knowledge, no undirected models
have been applied to modeling neighbor influence and hidden
variables in networks. In contrast to discriminative undirected
models [8, 9], a generative model does not rely on labeled
latent states being always available for training. While be-
lief propagation can be used for inference in an undirected
model, such a method may not converge for a general net-
work with loops [10, 11]. To overcome this, we propose a
variational inference method [5] which is also scalable com-
pared to sampling methods. After forming our model as a
member of the exponential family, we show that we can use
stochastic approximation to compute the intractable deriva-
tives. This strategy was used to estimate the parameters of
our model. In summary, the main contributions of our work
include a novel undirected generative model for inferring la-
tent states in a network influenced by neighbors’ actions and a
computationally efficient inference method scalable to larger
networks. We employ sampling only for training the model.
The paper is organized as follows: Section 2 formulates the
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model, Section 3 presents the variational inference approach,
Section 4 provides a training method, Section 5 details the
experimental results, and Section 6 concludes.

2. MODELING WITH EXPONENTIAL FACTORS

We assume a directed network N(V, £) with N =| V' | users.
While the proposed model is valid for a dynamic network, for
convenience, we assume a static network in this paper. User
i’s set of neighbors, N (i) is defined as

NG ={eV\ilAy=1}iev, M)

where A is the adjacency matrix. The time duration in which
the user activities are observed is divided into 7" equal time
periods with time stamps 7 ...7r. Let X} denote the la-
tent state and Z; be the C' dimensional vector of user ac-
tivity counts of user ¢ during the time period [m3_1,7¢). Let
7 ={1,2,..., K} be the set of latent states. We use 1-of-K
encoding to denote this latent state. We model the joint dis-
tribution of all latent variables X | and the observed user
activity counts Z;: through two exponential factors 14 and
1¥p. As we need to model temporal dynamics of the latent
states influenced by A/ (i), the factor 14 includes X} _;, X}
and its neighbor activity counts at t — 1. We also assume the
frequency of activity counts of a user is dependent on its latent
state. This is modeled through vz which includes X} and Z;.
We combine these two factors for each user across all time
durations to obtain the full joint distribution P(X 1A Z1N),

2.1. Factor for Latent Sentiments and Neighbor Influence
Factor 94 is defined as
wA(Xif—l =a, th =0, ng{\/(i))
zi,
| V(i) |

= exp H(i)gb Z

JEN ()

exp(0(i)ap0), (2)

where 0(i)ap0 € R, 0(i)ap € RY, and a,b € I,t =
2,...,T. The influence of the agents in N () on user 7’s
latent states is incorporated into this factor through the vector
parameter 6(), 5. The dependency on latent states a, b of this
parameter models how neighbor actions affect the dynamics
of different latent states. This factor also models how user ’s
own latent state affects the temporal evolution of future latent
states by the parameter 6(¢)4,5,0, €.g., for a stubborn user i
who disregards A/ (7)’s actions this can be large.

2.2. Factor for Latent Sentiments and User Activity

Factor 1 g is defined as

P 1 , o
VB(X{, Z) = ————exp(Z A@)X]), ()

where A(i) € RE*IZl and t = 1,...,T. The parameter \(4)
contributes to the changes in the intensity of each user ¢’s ac-
tivity Z; depending on X;. Each value in A(i) affects Z; de-
pending on v = 1...C and latent state X; € Z. In contrast
to the self or mutually exciting point process in recent work
[12, 13], we do not assume that the user activities will always
trigger more activities. Depending on A(i) and X7, the fre-
quency of these activities can decrease or increase. The form
of ¥p also makes the distribution of user ¢’s activity counts
at time ¢ a Poisson distribution conditioned on all the other
variables X7, 77, i # j. This is useful for training as we can
directly sample Z; from a Poisson distribution.

2.3. Joint Distribution of Complete Data

Combining the two factors in (2) and (3), the complete joint
distribution of Z1:¥ and X3 can be obtained as

P(X{7, 217 | 6,2

N . .
1 v(xXi, 24)

~ exp(A(6, )

N (T
gl {Hw“‘(Xfi’XfhZi—elN(”)wB(Xf,Zz)} :
i=1 \t=2
“)

where @ = {0(1)45,0(L)apo---0(N)ap,0(N)apo} and
A= {A1)...A(N)}; A(8, ) is the logarithm of the nor-
malizing constant, while {6, A} denotes the set of parameters
of our model for all users. Note that the use of linear terms
in the exponents without complex feature transformations
allows the other relevant tasks such as inference and training
to be computationally feasible. Finally, the exponential terms
14 and ¥ p can be combined to form an exponential family
distribution, i.e.,

P(X1%, Zi%) = h(Z) exp{E,(X, Z) — A(B,N)},  (5)

where
N T . _
Ey (X, Z) => 3 ZI A@)X]
i=1 t=1
N T . _
JFZZXZ—l I 10, 2)Xy;
i=1 t=2

Fifl(ea Z){a,b} = é(z)ib Lp a, b S I (6)

>

1
0(i)ay = [H(ZZ).“”O} D 2= Z | o
JEN (i) |N(Z> |
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3. INFERRING LATENT STATES

How can we efficiently compute the probabilities of latent
states after observing user activities? The posterior distribu-
tion of latent variables conditioned on observed user activity
counts is

= exp{E (X,Z)— A, \2)}, (8

where A(6, A, Z) is the normalizing constant of the posterior
distribution. While belief propagation algorithms can be used
to compute the exact probabilities of a factor model, it cannot
be used here since our model is in general not a tree structure
[10]. As loopy belief propagation is also not guaranteed to
converge [11], we propose a variational inference method [14]
as an approximate solution to our inference problem.

3.1. Mean Field Variational Inference

For the variational distribution we assume a fully factored ap-
proximation over the latent variables as given in (9), i.e.,

HHq X 1), )

i=1t=1

QX1T \’Y

where ¢(X} = k | 7) denotes the probability that the la-
tent state is equal to k € Z and ~; is the multinomial varia-
tional parameter. We then make this approximate distribution
as close as possible to (8) (in the KL divergence sense). The
KL divergence between P(X L | Z1E) and Q(X1N) is

QX17) ]
P(Xi7 | Zi7)

Z{ZE logq(Xllw)]}

t=1 \i=1

7EQ[ p(X,Z)}+A(9,/\,Z) (10)

KL(Q || P) =, [l

where E, is the expectation with respect to the variational
distribution. We minimize (10) with respect to ~; for all i and
t to obtain the best approximation. Substituting (5) for E,
and ignoring constant terms with respect to -y, we get

N T
. . T . .
> Eglogg(X) [ 4)) — Zi A(i)Eq[X]]
=1 t=1
N

3

KL(QIIP) =
Eg[X; 1]"Ti 1 (0, 2)Ey[X{]

;T
0
Zt

s
M~ 11

@
I
-
~
Il
-

A(1)Eq[X]- (11)

Note that, since we use a fully factored approximation, the ex-
pectation terms in the second line above can be separated into
two terms. To obtain the coordinate descent equations for the
mean field update of ¢(X} | 7;) we replace the other variables
with their expectations and write the remaining terms as

KL(Q||P) = Eqloglg(X] | 7)) — Eqlog f(X]) + &, (12)
where k is a constant and

eXP(Eq [ngl}Trifl(e Z)Xi)

xexp (X{TTi0, 2)E X0 ) + 2 A0 X} )
(X = ift >2;
iTpi i iTy(4) X
exp (XiTH0. 2B, (X} ] + 28 AG)XE)
otherwise.

(13)
Since (12) is again in the form of the KL divergence where
the normalizing constant is absorbed into the constant term, it
will be minimized when

a(X] | ) < f(X)). (14)

All the variational parameters are updated using (14) with the
expectations in f(X}) computed by using the parameters of
the most recent updates [5].

4. ESTIMATING PARAMETERS

The model parameters can be estimated using a maximum
likelihood strategy. The method proposed in this paper is a
supervised training method assuming both latent variables X}
and user activity counts Z; are available in the training data.
One challenge of our model is computing the derivatives of
the normalizing factor A(@, \) which is also known as the
log partition function of an exponential family distribution.
Since our model is a member of the exponential family, we
can approximate the derivatives with respect to the model pa-
rameters using stochastic methods. The complete data log-
likelihood under this model can be written as

log P(XLY, ZE8) = E,(X, Z) — A(8,A) + log h(Z).
15)
Denoting the parameter vector as A and defining L(A) as the
negative log-likelihood terms in (15), we get

L(A) =A(0,\) — E,(X,Z). (16)
Computing the gradient with respect to A we get
0 0 8
aAL(A) a—AA(O A)— A E,(X,Z). W)

While the gradients of E,(X, Z) can be computed, we can-
not directly compute the gradients of A(6, A) due to infinite
summations. However we can write it as an expectation [14]:
0 0

— A0, \) = X, Z 1
RAON =5, | FE 2] oy
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where [E,, is the expectation with respect to the true joint dis-
tribution in (5). Then we approximate this expectation using
MCMC methods. Specifically we can write

o 1 0
B 3R B 2|~ § Y g2, a9

where X and Z; are the samples drawn from (5). We em-
ploy Gibbs sampling to generate these samples. Finally, we
minimize L(A) using the following form of update:

0 0.01

! R S L il prapes )

A (20)

Since E,(X, Z) is linear in parameters and A(6, A) is convex
in A [14], this type of an update is guaranteed to converge to
a global minimum under certain conditions on €,, [15].

5. EXPERIMENTS

To evaluate our model, we use a synthetic dataset where the
ground truth is known. We generate samples of user activity
counts and latent states from (5) and this data was used as the
training dataset. another set of samples was generated as the
testing dataset. The observed user activity counts were used
to infer unobserved/hidden states of the agents in a network.
We implemented our work using C++ and Python libraries
[16, 17]. We compare our method with two baseline meth-
ods: (1) Cox process [18] which treats each category of user
activity is a Poisson process where the underlying intensity
is stochastic. The intensity is assumed to be a Markov chain
where states correspond to latent states of agents. (2) Sup-
port vector machine (SVM) was also used to classify latent
states. For SVM, the input feature for each variable Xti is a
2C-dimensional vector in which we include the sum of the
neighbor activities and user ¢’s own activity counts at time ¢.

The data for the experiments were generated on an Erdds-
Rényi random graph with an edge probability of 0.2. We set
|Z| = 2 and C' = 2. The parameters used are

0()ap = [0%‘(561(‘1_;:))}; A(i) = [11 _11] Q1)

where 0(i)q 50 = 0.1, Va,beZ, i=1,...,N.

For the first experiment, we changed the number of users
in the network from 100 to 400. Fig. 1 includes the ROC
curves for all three methods for N = 100 and 7" = 10. The
area under the curve of the ROC (AUC-ROC) values appear
in Table 1. The AUC-ROC for SVM is close to 0.5 in all the
experiments because the SVM assumes all samples are in-
dependent. While the Cox process models temporal dynam-
ics thus giving better performance than the SVM, it does not
model the coupling among users. The proposed method has
AUC-ROC values greater than 0.9 in all the experiments, an
indication of its scalability for larger networks.
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Fig. 1. The ROC curves for N = 100 and T" = 10.

Table 1. AUC-ROC for Different Network Sizes

N [SVM [ Cox [ Proposed
100 | 0.55768 | 0.76397 | 0.93413
200 | 0.55115 | 0.74995 | 0.93085
300 | 0.49945 | 0.80338 | 0.92186
400 | 0.50534 | 0.75932 | 0.93517

For the second experiment, we increased | Z | to 3 keeping
the other parameters constant; 6(4),,, and A(2) were set to

-0.5

71'2(|I|a+b+1) -1 1
0()ap = ‘0. ; A(@) = |05 —05
W(|I|a+b+1) 1 -1

(22)

The ROC-AUC values computed using the one-vs-rest ap-
proach for each latent state appear in Table 2. While there
is a variation in performance across different states, the pro-
posed method always performs better than the Cox process.

6. CONCLUSION

We have proposed an undirected generative model for model-
ing networked data which addresses some of the limitation in
existing models of its kind. An efficient inference method and
a training method with stochastic approximation were also
presented despite the intractabilities involved with this model.
The results demonstrate that this model can infer latent states
outperforming other baseline methods.

Table 2. ROC Performance for |Z| = 3

State | 1 |2 |3
Cox 0.83945 | 0.60181 | 0.77642
Proposed | 0.91683 | 0.67330 | 0.83976
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