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ABSTRACT

To advance the performance of continuous emotion recognition
from speech, we introduce a reconstruction-error-based (RE-based)
learning framework with memory-enhanced Recurrent Neural Net-
works (RNN). In the framework, two successive RNN models are
adopted, where the first model is used as an autoencoder for recon-
structing the original features, and the second is employed to per-
form emotion prediction. The RE of the original features is used as
a complementary descriptor, which is merged with the original fea-
tures and fed to the second model. The assumption of this framework
is that the system has the ability to learn its ’drawback’ which is ex-
pressed by the RE. Experimental results on the RECOLA database
show that the proposed framework significantly outperforms the
baseline systems without any RE information in terms of Concor-
dance Correlation Coefficient (.729 vs .710 for arousal, .360 vs .237
for valence), and also significantly overcomes other state-of-the-art
methods.

Index Terms— Continuous emotion recognition, reconstruction
error, bidirectional long short-term memory

1. INTRODUCTION

Automatic continuous emotion recognition in speech is one of the
most active research areas in the affective computing community in
recent years [1, 2]. Many efforts have been reported in order to ad-
vance the system performance and further facilitate its applications
in the real world [3–6]. Among these efforts, a memory-enhanced
Recurrent Neural Network (RNN), namely Long Short-Term Mem-
ory (LSTM) RNN, has attracted considerable attention to address
the raised task in the past few years [7–12]. The successful im-
plementation of LSTM-RNN is mainly due to its powerful capa-
bility of learning long-range contextual information for sequential
patterns [13, 14].

More recently, advanced research has begun to explore the ben-
efits of LSTM in the context of continuous emotion recognition.
In [6], Weninger et al. proposed a novel discriminative learn-
ing method, which exploits the Concordance Correlation Coeffi-
cient (CCC), rather than the traditional Root Mean Square Error
(RMSE), as a differentiable objective function to train a LSTM-
RNN model. In [15], Trigeorgis et al. utilised data-learnt high-
level representations, instead of the traditional hand-crafted features
like Mel-Frequency Cepstral Coefficients (MFCC), as the inputs of
LSTM-RNN. The high-level representations are derived from the
raw speech signals with the aid of Convolutional Neural Networks

(CNN), which are jointly combined with the LSTM-based recogni-
tion model to constitute an end-to-end framework.

In this paper, we propose another novel framework based on the
Reconstruction Error (RE) for continuous emotion recognition in
speech. The underlying assumption is that, the LSTM-RNNs could
learn their ’drawbacks’ if we provide them a way to know when the
inputs are more challenging to process. Specifically, we utilise the
RE from one LSTM-RNN model, used as an Auto Encoder (AE), to
express the drawbacks of another LSTM-RNN model used for emo-
tion regression. The RE is thus used as a complementary descriptor
of the original features, that describes the ability of the LSTM-RNN
model to encode the emotion related information.

The idea of the proposed method is partially inspired by the
promising attention modelling in the field of natural language pro-
cessing [16], where the decoder pays different attention to the re-
gions of the input based on their relevant degree with the output. As
to our method, the continuous variation of the RE provides different
levels of disturbance when training a model with time-continuous
features. In this contribution, we demonstrate by empirical analysis
that this approach can help heighten the attention of a model on the
error-sensitivity regions, so as to ameliorate the model performance
for emotion recognition from speech.

2. RELATED WORK

RE has been originally used as an objective function of AE for ex-
tracting high-level representations. Recently, however, a trend in
the machine learning community has emerged towards exploiting di-
rectly the RE as descriptors for other tasks, e. g. , it was considered
as a novelty measure for novelty detection [17]. An AE is trained on
normal samples beforehand to serve as a novel event detector. When
a new sample is fed into the AE, its RE is compared with a prede-
fined threshold to decide whether the current sample is abnormal.
When an unknown sample passes through the AEs that are trained
class-specifically, the corresponding RE indicates the likelihood to
belong to a class.However, to the best of our knowledge, none of the
works takes the RE into consideration for augmenting the learning
capability of another similar model for recognition.

This work is also relevant to the tandem architectures in the
speech recognition domain, which use the state or phoneme poste-
rior probabilities generated by a neural network as features observed
by a Hidden Markov Model (HMM). Thanks to the development
of neural networks, the topologies have been shifted from the early
Multilayer Perceptron (MLP) [18] to the recent LSTM-RNN [19].
For emotion recognition, and to the best of our knowledge, only the
tandem structure of LSTM-DBN has been exploited in [20] so far.
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In this work, the advantages of disparate models, i. e., the context-
sensitivity capabilities of LSTM, and the generalisation competence
of HMM or DBN, have been explored.

Nevertheless, these architectures only take the prediction or the
prediction probability as another dimensional representation, which
are merely designed for classification tasks rather than regression
problems. In this paper, we leverage for the first time the RE infor-
mation of an LSTM-based AE to perform a time-continuous regres-
sion task (emotion) from speech.

3. RECONSTRUCTION-ERROR-BASED LEARNING

3.1. Overview

The framework of our proposed RE-based learning is depicted in
Fig. 1, which consists of two stages: (i) the extraction stage, and
(ii) the exploitation stage. In the first stage, the RE information is
collected by applying a first model to rebuild each frame of the input
as an AE. Given the inputs xt of the model at time t, and its output
counterparts x̂t, the RE εt can be calculated by ‖xt − x̂t‖. In the
second stage, the RE information combined with original features,
i. e., [xt, εt], are used as new inputs to build a regression model that
performs emotion prediction.

xt Model1 − Model2 yt

extraction stage exploitation stage

x̂t ‖xt − x̂t‖

Fig. 1. Framework of reconstruction error based learning

One key question of this framework is how to guarantee that the
RE information, that is derived from the first model, can be success-
fully exploited by the second model. To this end, we assume that the
two models have a similar structure such that the RE extracted with
the first model can well reflect the drawbacks of the second model.
In this paper, we employ Bidirectional LSTM-RNN (BLSTM-RNN)
as the basic model because of its great success in continuous recog-
nition of emotion, cf. Section 1.

In general, the BLSTM-RNN structure is composed of one input
layer, one or multiple hidden layers, and one output layer [13]. The
bidirectional hidden layers separately process the input sequences
in a forward and a backward order and connect them to the same
output layer. Compared with conventional RNNs, it adopts LSTM
blocks to replace the neurons in the hidden layers. Each block con-
sists of a self-connected memory cell and three gate units, namely
input, output, and forget gate. These three gates allow the network
to learn when to write, read, or reset the value in the memory cell.
Such a structure grants BLSTM-RNN to learn past and future con-
text in both short and long range. For a more in-depth explanation
of BLSTM-RNNs the reader is referred to [13].

3.2. Extraction Stage

To extract the RE information, the BLSTM-RNN model is trained in
a completely unsupervised way. That is, the inputs and the targets are
exactly the same. If the model would be sufficiently powerful, one
would expect that all inputs should be recovered. However, many
empirical experiments have shown that the results are far from this

expectation [10], which somewhat implies that BLSTM-RNN has its
own drawbacks, just like any other machine learning technique.

Specifically, given a time sequence as input, the BLSTM-RNN
is trained to minimise the cost function as

J (θ) =
T∑
t=1

(xt − x̂t)2, (1)

where xt is a sample at time t from an input sequence lasting a
period of time T , and x̂t denotes the reconstructed sample of the
corresponding input xt.

Once the first BLSTM-RNN model is trained, the RE εt can be
obtained by computing the sum of the Euclidean distance between
the input xt and its corresponding reconstruction x̂t over all L di-
mensions, as expressed in Eq. (2). The result, εt, is therefore a scalar.

εt =

L∑
l=1

|x̂t,l − xt,l|, t ∈ T. (2)

3.3. Exploitation Stage

In this stage, it is expected that the features with their respective
RE values will attract different attention from the regression model.
After the RE information εt is generated, it is simply concatenated
with the original features xt to form a longer feature vector [xt, εt],
which thus incorporates information regarding reconstruction issues
obtained with the first model. The conventional machine learning
paradigms can be then applied sequentially.

It is worth noting that the features xt used for training Model1
in the extraction stage could be either frame-based Low-Level De-
scriptors (LLD), or the segment-based statistical features – after ap-
plying functionals over the LLD –, which may result in a difference
in the final feature dimensions used for the exploitation stage. More
details on these settings are explained in Section 4.2.

4. EXPERIMENTS AND RESULTS

In this section, we present a set of experiments on a time- and value-
continuous dimensional emotion (arousal and valence) prediction
task. The objective of the experiments is to empirically demonstrate
the benefits of adding RE information to the conventional features
for the proposed task.

4.1. Selected Database and Features

We evaluate our RE-based learning method on the RECOLA [21]
database, which has been adopted for the AudioVisual Emotion
recognition Challenges (AVEC) in 2015 [1] and 2016 [2]. This
database contains spontaneous and natural interactions between re-
mote participants that solved a task in dyads. The whole dataset
contains recordings from 46 different subjects. The dataset is fur-
ther divided into three disjoint partitions while balancing the gender,
age, and mother tongue of the participants (cf. Table 1). It is worth
mentioning that, we used exactly the same partitions as in [6, 15].

To annotate the corpus, time- and value-continuous dimensional
affect ratings in terms of arousal and valence were performed by six
French-speaking raters (three females) for the first five minutes of
all recorded sequences. The obtained labels were then resampled at
a constant frame rate of 40ms, and averaged over all raters by con-
sidering inter-evaluator agreement, to provide a ‘gold standard’ [21].
Measures of inter-rater agreement show the reliability of the annota-
tion data and the used post-processing techniques [1, 2].
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Table 1. Three partitions of the RECOLA database.

# train development test

female/male 10/6 9/6 8/7

French 11 11 11
Italian 3 2 3
German 2 1 1
Portuguese 0 1 0

age µ (σ) 22.3 (3.4) 21.6 (2.1) 21.2 (2.0)

To extract acoustic features from the speech recordings, we used
our open-source openSMILE toolkit [22] to extract 13 LLDs, i. e.,
MFCC 0–12 and logarithmic energy, with a frame window size of
25ms and a step of 10ms. The arithmetic mean and the coefficient
of variance were then computed over the sequential LLDs at a rate
of 40 ms – to match the granularity of the annotation – using over-
lapping windows of 8 s length, resulting in 26 statistical features per
analysis window. The total numbers of segments in the train, de-
velopment, and test partitions are 120 000, 112 500, and 112 500,
respectively.

4.2. Implementation and Evaluation

When training the first BLSTM-RNN model as an AE, there are two
methods for choosing the training data as mentioned in Section 3.3
– either by the 13 LLDs (lld-based strategy), or by the 26 statisti-
cal features (functional-based strategy). This choice defines then the
number of nodes of the input and output layers of the model, i. e., ei-
ther 13 or 26, respectively. In both cases, only one dimensional RE
εt is produced per input by Eq. (2), giving rise to 14 and 27 dimen-
sional features, respectively. However, for the LLDs, functionals
have to be applied before feeding them into the second BLSTM-
RNN model. In doing this, there are 28 statistical features obtained
in total for the lld-based strategy, since the means and variations are
further calculated over the 13 LLDs plus the generated RE εt. There-
fore, when training the second model to perform emotion prediction,
the number of nodes of its input layer is either 28 for the lld-based
strategy, or 27 for the functional-based strategy, respectively.

We adopted two hidden layers for both BLSTM-RNN models.
In our experiments, the first model consists of 30 nodes per hidden
layer with a learning rate of 10−6, whereas 26 nodes are used for the
second model, with a learning rate of 10−5. Zero mean Gaussian
noise with standard deviation 0.2 was added to the input activations
in the training phase of both models to improve generalisation. The
parameters of each model were optimised on the validation set with
an early stopping strategy. Note that, an online standardisation was
carried out on the features for both validation and test partitions,
i. e., the means and variances of the features were calculated on the
training partition and used on the two other partitions for standardi-
sation. Additionally, annotation delay compensation was performed
to compensate for the temporal delay between the observable cues,
as seen in the recordings, and the corresponding emotion reported by
the annotators [23]. As in [2, 24], we identified this delay to be four
seconds which was duly compensated, by shifting the gold standard
back in time with respect to the features for both arousal and valence.

To evaluate the performance of our methods, we used the CCC,
which is a standard evaluation metric for time- and value-continuous
predictions of emotion [1]; it measures here the agreement be-
tween the gold standard and the prediction provided by the second
BLSTM-RNN model. Given two time sequences x and y, their CCC

Table 2. Performance comparison (CCC) between the baseline and
the proposed reconstruction-error-based learning methods (lld- or
functional-based) on the dev(elopment) and test partitions for both
arousal and valence regression. The symbol of ∗ indicates the sig-
nificance of the performance improvement over the baseline.

arousal valence
CCC dev test dev test

baseline .712 .703 .333 .238
lld-based .762∗ .723∗ .360∗ .263∗

functional-based .710 .714∗ .368∗ .298∗

is defined as follows:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
, (3)

where ρ is the Pearson’s Correlation Coefficient (PCC) between two
time series (e.g., prediction and gold-standard); µx and µy are the
means of each time series; and σ2

x and σ2
y are the corresponding

variances. In contrast to the PCC, CCC takes not only the linear
correlation, but also the bias between the two temporal series, i.e.,
(µx − µy)2, into account. Hence, the value of CCC is within the
range of [−1, 1], where ±1 represents perfect concordance and dis-
cordance while 0 means no correlation.

To further assess the significance level of performance improve-
ment, a statistical evaluation was carried out over all predictions
obtained with the proposed RE-based learning and with a baseline
method (i.e., original features without RE), by means of the Fisher’s
r-to-z transformation [25]. Unless stated otherwise, a p value lower
than .05 indicates statistical significance.

4.3. Results and Discussion

The performance of the proposed RE-based learning with two RE
extraction strategies (i.e., lld-based or functional-based) on the de-
velopment and the test sets, for both arousal and valence regression
tasks, is shown in Table 2. One can notice that in almost all cases,
the RE-based learning methods significantly outperform the base-
line systems that do not include the RE information. Even though
a slightly decrease of performance can be observed on the develop-
ment set for arousal and the functional based approach, the perfor-
mance on the test set still benefits from the use of RE as additional
information.

These results are highly encouraging since we only added a sum-
mary of the ability of the LSTM-RNN model to encode emotion re-
lated features into the original feature set, which yet contributes to a
significant improvement of performance. In addition, we tentatively
combined the RE features from another unmatched model rather
than BLSTM-RNN (e. g., Support Vector Regression), no similar
performance improvement was observed from the second BLSTM-
RNN model. This might imply that the RE extracted from a similar
structure better represent its drawbacks and is more helpful for the
exploitation.

Further, following the AVEC’s post-processing procedure of
predictions [1, 2], that was successfully replicated in other stud-
ies [6, 15], we applied the same chain of post-processing on the ob-
tained predictions; smoothing, centring, scaling, and time-shifting.
All the modification parameters are optimised on the development
set.

The resulting performance for both RE-based learning methods
and the baseline system is presented in Table 3. As expected, all
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Table 3. Performance comparison (CCC) between the proposed
reconstruction-error-based learning methods (lld- or functional-
based), the baseline system, and two other approaches (LSTM
with CCC as the cost function, and end-to-end learning), on the
dev(elopment) and test partitions for both arousal and valence re-
gression, after post-processing the predictions. The symbol of ∗ in-
dicates the significance of the performance improvement over the
baseline.

arousal valence
CCC dev test dev test

baseline .776 .710 .333 .237
LSTM [6] .412 .350 .242 .199
End-to-End [15] .741 .686 .325 .261
lld-based .785∗ .729∗ .364∗ .309∗

functional-based .754 .720∗ .378∗ .360∗

of the post-processed results performed better than the results with-
out post-processing of the predictions. In this scenario, one can still
observe that the RE-based learning methods persistently outperform
the baseline by a significant margin. Particularly, the best results
on the test set are achieved at .729 of CCC for arousal with the lld-
based strategy, and at .360 of CCC for valence for the functional-
based strategy. Additionally, the RE-based learning methods re-
markably outperforms the state-of-the-art methods, which are inves-
tigated in [6, 15] and outlined in Section 1.

To further investigate whether the proposed features contribute
to the observed performance improvement, we calculate the PCC
between the RE-based features and the performance improvement,
and the PCC between the RE-based features and the gold standard.
Specifically, the performance improvement is defined as δ = |pb −
gs|−|pε−gs|, given the golden standard (gs) and the predictions of
the input by using the baseline method (pb) or the RE-based methods
(pε). Furthermore, for the lld-based strategy, the RE-based feature
is calculated by ε = 0.5 ∗ std(εt) + 0.5 ∗ var(εt); while for the
functional-based strategy, ε = εt.

The corresponding values of the PCC are presented in Table 4.
From the table, one can see that the RE features have a relationship
with the performance improvement, particularly for valence regres-
sion. This somewhat implies that the second BLSTM-RNN model
pays more attention to the input regions that have high RE values,
and yields better performance in these regions. This also means that
the model holds the capability of learning from its drawbacks, as
we hypothesised at the beginning of the paper. Furthermore, the
PCC between the RE features and the performance improvement is
higher for valence than the values for arousal, which confirms the ob-
servation in Table 2 and 3 that more improvement was obtained for
valence regression than for arousal when integrating the RE-based
features. In addition, one can also notice that the RE-based fea-
tures have some correlation with the gold standard for both arousal
and valence regressions. This indicates that the RE-based features
take some pattern information which might be complementary for
the original features.

To highlight the performance of the RE-based learning methods,
Fig. 2 illustrates the automatic predictions of arousal and valence
obtained with the best settings among the two proposed strategies
(lld- or functional-based) for a single test subject. In general, the
predictions generated by the proposed method are closer to the gold
standard, which consequently contributes to better results in terms
of CCC.

Table 4. Linear correlations (PCC, ρ) between the reconstruction
error (ε) and the prediction improvement (δ), or between the recon-
struction error (ε) and the golden standard (gs), on the test partition
for both arousal and valence regression.

arousal valence
PCC ρ(ε, δ) ρ(ε, gs) ρ(ε, δ) ρ(ε, gs)

lld-based .086 .372 .561 .208
functional-based .019 .417 .467 .200
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Fig. 2. Illustration of arousal and valence predictions obtained by the
reconstruction-error-based learning method and the baseline method
for the 4th subject from the test partition.

5. CONCLUSIONS

In this paper, we proposed a novel Reconstruction-Error-based (RE-
based) learning framework for continuous emotion recognition in
speech. It extracts the RE information from one learning model,
then regards this information as additional features for another sim-
ilar learning model for regression. Experiments were performed on
the spontaneous emotional database – RECOLA – with BLSTM-
RNN. Two variants were investigated, as RE information could be
extracted from either the frame-based Low-Level Descriptors (LLD)
or the segment-based statistical features after applying functionals
on the LLD. When combining the RE information with the origi-
nal features, the performance of the continuous emotion recognition
systems can be significantly improved, and perform even better than
the most recent approaches. Moreover, the high correlation between
the RE and the performance improvement indicates that the RE in-
formation has a positive impact on the model. One may further note
that, the proposed methods could also be applied to other regression
problems, or even for classification tasks. For future work, we will
investigate into more details the reasons that cause the BLSTM-RNN
model to fail in the reconstruction, and will exploit other popular re-
gression models, like Support Vector Regression.
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