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ABSTRACT

Dimensionality reduction plays an important role in solving
the “curse of the dimensionality” and attracts a number of
researchers in the past decades. In this paper, we proposed
a new supervised linear dimensionality reduction method
named largest center-specific margin (LCM) based on the in-
tuition that after linear transformation, the distances between
the points and their corresponding class centers should be
small enough, and at the same time the distances between d-
ifferent unknown class centers should be as large as possible.
On the basis of this observation, we take the unknown class
centers into consideration for the first time and construct an
optimization function to formulate this problem. In addition,
we creatively transform the optimization objective function
into a matrix function and solve the problem analytically.
Finally, experiment results on three real datasets show the
competitive performance of our algorithm.

Index Terms— Dimensionality Reduction, LCM, Center-
specific Method

1. INTRODUCTION

Dimensionality reduction plays an important role in solving
the “curse of the dimensionality”. Directly working on high
dimensional data is not only time consuming but also compu-
tationally unreliable. So a great effort has been put in the past
decades and many classical algorithms have been proposed.
A good review of these algorithms can be referenced from
[1] [2] [3]. In addition, new ideas and methods can be further
referenced from [4] [5] [6] [7] [8] [9] [10] [11] [12]

Traditional dimensionality reduction algorithms can be
grouped into two classes, unsupervised ones and supervised
ones. A great number of these methods belong to unsuper-
vised ones such as principal components analysis (PCA [13]),
however, compared with supervised methods, unsupervised
methods cannot make full use of the samples’ potential. On
the other hand, most of traditional dimensionality reduction
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Fig. 1. Diagram for the intuition, circles and triangles should
be close to their diamond centers and the distances between
different diamond centers should be as large as possible.

methods do not utilize the information of class centers. There-
fore, supervised method with class centers’ information can
be taken into consideration and applied into dimensionality
reduction.

In this work, we proposed a new linear dimensionality re-
duction method on the basis of the observation that after lin-
ear transformation the distances between the points and their
corresponding class center should be small enough, and at
the same time the distances between different unknown class
centers should be as large as possible. It will be clearer to
understand the above idea from Fig. 1.

From Fig.1, it can be found that the class centers’ infor-
mation is of importance to the dimensionality reduction. So in
this work, for the first time, we take the unknown class cen-
ters that generate after linear transformation into considera-
tion. And based on the relationships showed in Fig.1, we con-
struct an optimization objective function with the variables of
the transformation matrix A and the unknown class centers
y1, y2, · · · , yn to formulate this intuition. Furthermore, we
creatively convert the initial objection function into a matrix
function which is more prone to analysing and solving the
problem. Moreover, we study the objective function inten-
sively and improve the objective function by imposing two
regular terms making it a convex function, and at the same
time the meanings of the formulation are reserved. At last,
we get the transformation matrix by solving the optimization
problem and the low-dimensional transformed data can be ac-
quired by multiplying the transformation matrix.

2352978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



2. METHODOLOGY

In this section, we introduce a new linear dimensionality re-
duction method named largest center-specific margin(LCM).
As a definition, linear dimensionality means, given n d-
dimensional data points X = [x1,x2, ...,xn] ∈ Rd×n and
a choice of dimensionality r < d, optimize some objective
fX(·) to produce a linear transformation A ∈ Rr×d, and
call Y = AX ∈ Rr×n the low-dimensional transformed
data. Next,we introduce a new method to optimize the linear
transformation matrix A

We build on the simple intuition that after linear transfor-
mation the distances between the points of the same label and
their corresponding class center should be small enough, and
at the same time the distances among unknown centers of dif-
ferent classes should be as large as possible. As shown in Fig.
(1), we can take the class centers’ information into consider-
ation and establish the relationships between points and their
unknown centers as well as the relationships among the corre-
sponding centers. From the basic intuition, we can formulate
the idea as below

min
A,y1,y2,...,yc

∑
i

∑
j

∥Axi−yj∥2−
∑
j

∑
cj ̸=ci

∥yi−yj∥2, (1)

where xi, i = 1, 2, ..., n are the feature representations of in-
stances of different classes and yj, j = 1, 2, ..., c are the un-
known class centers. In Eq. (1), the first term implies that af-
ter linear transformation A, the distances between the points
and their corresponding unknown center of the same class,
and the second term represents the distance between two un-
known centers of different class. In intuition, in order to ac-
quire an effective transformation matrix, the first term should
be as small as possible and in contrast the second term should
be as larger as possible. So we transform the second term to
the minus term making it a unified optimal problem.

Eq. (1) can be transformed into the following matrix form
after permutation and combination of the terms

min
A,Y
∥AX−YC∥2F − tr(YLYT ), (2)

where ∥ · ∥F is Frobenius norm, tr(·) stands for the trace op-
erator. m is the dimensionality of feature vector and n rep-
resents the number of all training samples. A ∈ Rm×m is a
linear transform matrix and X ∈ Rd×n stands for the sam-
ple matrix which consist of all the training samples and each
column stands for a feature vector of an instance of one class.
Y = [y1,y2, ...,yc] ∈ Rm×c is the matrix synthesized by
the centers of c classes. C ∈ Rc×n is a matrix with the fol-
lowing form

C =


1 · · · 1 0 · · · · · · · · · · · · 0
0 · · · 0 1 · · · 1 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · 0 1 · · · 1



L = I − 1
c11

T , which is the centering matrix, I stands for
identity matrix with dimensionality of c, and 1 stands for the
c-dimensional vector with all elements being 1. Note that,
∥AX−YC∥2F = tr(AX−YC)(AX−YC)T , so Eq. (2)
can be simplified into the following form

min
A,Y

tr(AXXTAT )− 2tr(YTAXCT )

+ tr(Y(CCT − I+
1

c
11T )YT ).

(3)

Nevertheless, the optimal problem described in Eq.(1) is
not guaranteed to be convex. For the convenience of tracking,
the original problem can be reformulated as follow, i.e. add
two regular terms to the objective function

min
A,y1,y2,...,yn

∑
i

∑
j

∥Axi − yj∥2 −
∑
j

∑
cj ̸=ci

∥yi − yj∥2

+ γ∥A∥2F + η∥Y∥2F .
(4)

Note that, after modifying, the new optimal Eq. (4) is jointly
convex with regard to A and Y, hence this optimal problem
has globally optimal solution. Moreover, even if adding two
regular terms to the original optimal Eq. (1), the significance
of the problem is not changed because the above regular terms
are equivalent to imposing constraint to A and Y so that the
norms of A and Y are not too large.

In the same manner, we can convert the Eq.(4) into the
following matrix form based on the Eq.(3) and the property
of trace operator.

min
A,Y

tr(ANAT )− 2tr(YTAXCT ) + tr(YKYT ), (5)

where
N = XXT + γI, (6)

K = CCT + (η − 1)I+
1

c
11T , (7)

and γ > 0, η > 1.
From now on, the optimization objective function has

been established. So the next task is to solve the optimal Eq.
(5). It is noted that Eq. (6) is continuous with regard to A
and Y, hence it can be solved by taking the derivation of
one of the variables when fixed the other one and letting the
derivation be 0. By fixing Y , we get the derivation of Eq.(5)
w.r.t A, this is AN−YCX = 0, and hence we can get

A = YCXTN−1. (8)

By fixing A, we get the derivation of Eq.(5) w.r.t Y, this is
YK−AXCT = 0, and hence we can get

Y = AXCTK−1. (9)
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Algorithm 1 LCM Algorithm for Dimensionality Reduction
Input:

The n training samples with corresponding labels
(xi,yi)

n
i=1

Output:
The transformation matrix A

1: Initialize parameters γ, η, error bound ε, class numbers c,
and set k = 0;

2: Execute PCA Algorithm and get the transformaztion ma-
trix P, set Ak ← P

3: Construct matrix C, and calculate matrix N, K from
E.q.(7) and E.q.(8)

4: while true do
5: k ← k + 1;
6: update Yk ← Ak−1XCTK−1

7: update Ak ← Yk−1CXTN−1

8: if ∥Ak −Ak−1∥F < ε then
9: return Ak

10: break
11: end if
12: end while
13: Set A← Ak

3. EXPERIMENT

We compare our algorithm with other dimensionality reduc-
tion methods, including PCA, MDS, LLE, LE, Isomap and
LCM. Aside from the visualization on synthetic datasets, we
also show results on three real datasets.

3.1. Visualization on Synthetic Dataset

We first show the visualization of our LCM algorithm on
four synthetic datasets from 3D to 2D, they are Swiss roll
dataset,vhelix dataset, twinpeaks dataset and broken Swiss
roll dataset. Details of the synthetic datasets are shown in
[1]. For every dataset, we generate 2000 data points. Fig.2

show the results. We can see that our LCM algorithm always
projects the high dimensional data points into a linear mani-
fold and at the same time maintains the property of clustering,
which is a powerful tool for analysing the high dimensional
data points. Compared with LCM, traditional dimensionality
reduction methods such as PCA and LLE do not maintain the
special shapes in low-dimensional space. It’s worth pointing
out that these four datasets are usually used to test the non-
linear dimensionality methods because of there non-cluster
structure, and our algorithm also show good structure after
embedding to low-dimensional space.

3.2. Real Datasets

In order test our algorithm on real datasets, we choose three
datasets to perform classification tasks, i.e. (1) the OR-
L dataset [14], (2) the Yale dataset [15], (3) the UMIST
dataset [16].

In experiments, firstly, we resize every image to the
same size and convert it to a column vector as the original
high-dimensional data representation. Next, dimensionality
reduction algorithms including PCA [17], MDS [18], LLE
[19], LE [20], Isomap [21], are used to project the high-
dimensional data representations into a low-dimensional data
representations. At last, we perform classification tasks on
the low-dimensional data representations by randomly se-
lecting train samples and test samples. Without loss of the
generality, we utilize the simple k-NN classifier (k = 1 in
our experiments) and evaluate our algorithm with the clas-
sification accuracy. For our LCM algorithm, we fixed our
parameters η = 1.5, γ = 0.5.

In Fig.3, we present the accuracy of 1-nearest neighbor
classifiers with different numbers of dimensionality which
were trained and tested on the low-dimensional data repre-
sentations obtained from the dimensionality reduction tech-
niques. From Fig. 3, it is clear that in ORL dataset and
UMIST dataset, our LCM algorithm achieved the best perfor-
mance with nearly 100% accuracy for every dimensionality.
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Fig. 3. (a) accuracy of 1-NN classifier on ORL dataset (b) accuracy of 1-NN classifier on Yale dataset (c) accuracy of 1-NN
classifier on UMIST dataset
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Fig. 2. 3D to 2D results on synthetic data. (a)-(d) original datasets from left to right:Swiss,Helix,twinpeaks and broken Swiss,
(e)-(h) LCM (i)-(l) PCA (m)-(p) LLE

In Yale dataset, however, compared with traditional dimen-
sionality reduction methods, LCM algorithm performed e-
quivalent to PCA and Isomap though it did not achieve the
best performance. Especially for UMIST dataset and ORL
dataset , in which every class is of quite a number of sam-
ples , LCM achieved an astonishing performance. From the
objective function, it can be found that our LCM algorithm
is designed for the classes that are of quite a number of data
points, this is why in UMIST dataset and ORL dataset, our
LCM algorithm performed so good. In other hand, it also can
be found in Yale dataset, our LCM also showed it’s good per-
formance, which demonstrates the competitive ability with
traditional dimensionality reduction methods.

4. CONCLUSION

Dimensionality reduction algorithms play an significant role
in solving the “curse of dimensionality”. In this work, we pro-
posed a new linear dimensionality reduction algorithm named

Largest Center-specific Margin (LCM). Our algorithm is built
upon the observation that after linear transformation, the dis-
tances between the points and their corresponding class cen-
ters should be small enough and the distances among un-
known centers of different class should be large enough. For
the first time, we take the unknown class centers into consid-
eration. And based on the relationships showed in Fig.1, we
construct an optimization objective function to formulate this
intuition. Furthermore, we creatively convert the initial ob-
jection function into a matrix function which is more prone to
analysing and solving the problem. We test our algorithm in
classification tasks on three real datasets and experiment re-
sults showed that our LCM algorithm is competitive with tra-
ditional algorithms. In addition, visualization from 3D to 2D
showed that our LCM algorithm always embedded the high
dimensional data points into a linear manifold while other al-
gorithms did not maintain special shapes. So it is more con-
venient to study the structure of high-dimensional manifolds.
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