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ABSTRACT

Stochastic neighbor embedding (SNE) aims to transform the ob-
servations in high-dimensional space into a low-dimensional space
which preserves neighbor identities by minimizing the Kullback-
Leibler divergence of the pairwise distributions between two spaces
where Gaussian distributions are assumed. Data visualization could
be improved by adopting the t-SNE where Student t distribution is
used in the low-dimensional space. However, data pairs in the la-
tent space are forced to be squeezed due to the loss of dimensions.
This study incorporates the power-law distribution into construction
of the p-SNE. Such an unsupervised p-SNE increases the physi-
cal forces in neighbor embedding so that the neighbors in the low-
dimensional space can be adjusted flexibly to reflect the neighboring
in the high-dimensional space. The experiments on three learning
tasks illustrate that the manifold or data structure using the proposed
p-SNE is preserved in better shape than that using SNE and t-SNE.

Index Terms— Manifold learning, dimensionality reduction,
power law, stochastic neighbor embedding, visualization

1. INTRODUCTION

In real-world applications, we face signal processing problems on
high-dimensional data such as audio, music, text, images, videos
and social networks. The “curse of dimensionality” becomes seri-
ous when the information systems are operated in high-dimensional
space. To deal with this issue, a popular approach is to transform
the high-dimensional data into the low-dimensional one. We aim to
learn a low-dimensional representation which is efficient to extract
useful information for classification and prediction [1]. Basically,
algorithms for learning representation range from the linear trans-
formations, such as the principal component analysis and the lin-
ear discriminant analysis, to nonlinear mappings, such as the locally
linear embedding [2] and the stochastic neighbor embedding (SNE)
[3, 4, 5, 6] which are regarded as nonparametric mappings. A para-
metric mapping based on deep neural network [7, 8] was learned to
handle the unseen data in manifold learning. Nevertheless, SNE has
been extensively developed for probabilistic dimensionality reduc-
tion and data visualization.

In general, SNE [3] is carried out by optimizing the Kullback-
Leibler (KL) divergence for distributions of different neighbors in
high-dimensional space and low-dimensional space. The distribu-
tions are characterized by Gaussian using the distance between two
samples. However, SNE suffers from the crowding problem [4]
so that the pairwise distances in the low-dimensional space cannot
faithfully reflect those in high-dimensional observation space. To
avoid this problem, the prior distribution in the low-dimensional map
was modified as the heavy-tailed distributions [5], e.g. Student t dis-
tribution [4]. Also, in [9], an exit distribution [10] was employed
in SNE subject to a spherical constraint. This paper investigates

the effect of attractive force and repulsive force in different vari-
ants of SNE and proposes a new power-law SNE (p-SNE) where
the low-dimensional neighbor representation is characterized by the
power-law distribution. Using this p-SNE, the attractive and repul-
sive forces are increased for nearby samples. The activation of sam-
ples in the high-dimensional map can be effectively expressed in the
low-dimensional map. The solution to crowding problem is further
strengthened.

2. STOCHASTIC NEIGHBOR EMBEDDING

SNE is known as a nonlinear manifold learning. Suppose we are
given a set of N high-dimensional data X = {xi ∈ RD}. SNE
attempts to find the low-dimensional representation Y = {yi ∈ Rd}
such that yi preserves the pairwise similarity of xi with d < D.
The pairwise similarity is measured by the conditional probability
pj|i that xj is a neighbor of xi. This probability is modeled by a
Gaussian distribution with a variance σ2 expressed by

pj|i =
exp

(
−‖xi − xj‖2/2σ2

i

)∑
k 6=i exp (−‖xi − xk‖2/2σ2

i )
. (1)

Correspondingly, we need to measure the conditional probability qj|i
for a pair of neighbors yi and yj in the low-dimensional space. The
aim of neighbor embedding is to match these two sets of distributions
Pi = {pj|i} and Qi = {qj|i} for individual sample i as well as
possible. To do so, we minimize a cost function L which is the sum
of KL divergences between Pi and Qi from all samples

L ,
∑
i

DKL(Pi‖Qi) =
∑
i

∑
j

pj|i log

(
pj|i
qj|i

)
. (2)

SNE has different variants which depend on the definition of condi-
tional distribution qj|i in the low-dimensional space.

2.1. Gaussian distribution

The original SNE [3] was constructed by assuming the conditional
distribution qj|i, that picks latent sample yj as the neighbor of sam-
ple yi, to be Gaussian with a shared variance σ2

i = 1/2 yielded
by

qj|i =
exp

(
−‖yi − yj‖2

)∑
k 6=i exp

(
−‖yi − yk‖2

) . (3)

In a symmetric SNE [11], the pairwise similarities encoded in Pi and
Qi are measured by using the joint probabilities

pij =
exp

(
−‖xi − xj‖2/2σ2

)∑
k 6=l exp (−‖xk − xl‖2/2σ2)

qij =
exp

(
−‖yi − yj‖2

)∑
k 6=l exp (−‖yk − yl‖2)

(4)
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where pij = pji and qij = qji. The objective of symmetric SNE
is then obtained by substituting pij and qij in Eq. (4) into KL di-
vergence in Eq. (2). This objective is minimized to find the optimal
latent sample yi in low-dimensional space according to the gradient

∂Lsne

∂yi
= 4

∑
j

(pij − qij) (yi − yj) . (5)

Using SNE, the repulsive force is equipped to blow away those data
points of less similarity and such effect soothes the so-called crowd-
ing problem, caused by dimensionality reduction such that the ac-
commodation space of data points is lost during the transformation.

2.2. Student t distribution

To alleviate more of this problem, the heavy-tailed distribution
based on Student t distribution was employed to characterize the
joint probability of a data pair in the low-dimensional space [4]

qij =

(
1 + ‖yi − yj‖2

)−1∑
k 6=l
(
1 + ‖yk − yl‖2

)−1 . (6)

The resulting t-SNE is implemented by minimizing KL divergence
between pij in Eq. (4) and qij in Eq. (6) using all data pairs. The
gradient with respect to yi is calculated by

∂Lt-sne

∂yi
= 4

∑
j

(pij − qij) (yi − yj)
(
1 + ‖yi − yj‖2

)−1
. (7)

This t-SNE improves the crowding problem by increasing repulsion
to the lower-dimensional particles Y = {yi}.

2.3. Exit distribution

In [9], a spherical SNE (e-sSNE) was proposed for visualizing the
hyperspectral data by minimizing the KL divergence between {pij}
and {qij} where a spherical constraint was imposed and the exit
distribution [10] is adopted as the neighbor probability in the low-
dimensional space

qij =
‖yj − ρyi‖−d∑
k 6=l‖yk − ρyl‖

−d (8)

where ρ ∈ [0, 1) and qij 6= qji. Exit distribution is known as a
distribution of the exit place for the iterated Brownian motion in a
hypersphere [10]. The embedding on a (d− 1)- dimensional sphere
Sd−1 in e-sSNE is governed by solving the constrained optimization
problem

Le-ssne =
∑
i

∑
j

pij log

(
pij
qij

)
+
∑
i

λi
(
1− ‖yi‖2

)
(9)

where the Lagrange multiplier λi is introduced to restrict yi on
Sd−1. This optimization is solved by using the gradient

∂Le-ssne

∂yi
= d

∑
j

pij

(
yi − ρyj
‖yi − ρyj‖2

+ ρ
ρyi − yj

‖yj − ρyi‖2

)

+ d

(
ρ
∑
j

qij
yj − ρyi
‖yi − ρyj‖2

−
∑
j

qij
yi − ρyj
‖yj − ρyi‖2

)
− 2λiyi. (10)

The effects of neighbor embedding comprised of the spherical con-
straint and the exit distribution are coupled in Eq. (10). The individ-
ual effect is hard to analyze.

3. POWER-LAW MANIFOLD LEARNING

This paper presents a general framework of SNE with different re-
alizations of joint distribution qij and divergence measure D or loss
function L. A variant of heavy-tailed SNE using power-law distri-
bution is developed.

3.1. General objective function

Let MD and N d denote two manifolds in high-dimensional and
low-dimensional spaces, respectively. A general manifold learn-
ing is to find a mapping ϕ : M → N such that an objective
L (P (X ), Q(Y)) is optimized to obtain Y = ϕ (X ). The joint dis-
tribution can be expressed in a basic form of

qij =
Q(rij)∑
k 6=lQ(rkl)

(11)

where rij , ‖yi − yj‖ is a distance measure and Q is an arbitrary
but decreasing function (Q̇ < 0). This general SNE allows different
choices of symmetric probability distributions P and Q equipped in
M andN . Notably, we adopt an arbitrary f divergence [12] to build
up a general objective function

L ,
∑
i

Df (Pi‖Qi) =
∑
i

∑
j

pijf

(
qij
pij

)
(12)

where f(·) denotes a convex function with f(1) = 0. Under this
objective, the gradient for optimization is computed as

∂L
∂yi

=
2

Z

[∑
j

Q̇(rij)f
′
(
qij
pij

)(
yi − yj
rij

)]

− 2

Z2

∑
k 6=l

f ′
(
qkl
pkl

)
Q(rkl)

[∑
j

Q̇(rij)

(
yi − yj
rij

)]
(13)

where Q̇(r) = d
dr
Q(r), f ′(t) = d

dt
f(t) and Z =

∑
k 6=lQ(rkl) is

the normalization term. KL divergence is then a special case of f
divergence when f(t) = − log t. Also, χ2-divergence is the case
when f(t) = (t − 1)2. Basically, Eq. (13) tells us that the origin
of attraction in the first term comes from the decay rate of target
similarity Q̇ and the differential of f -divergence f ′ while the repul-
sion in the second term is related to Q̇. Considering the case of KL
divergence, the gradient in Eq. (13) is realized as

2
∑
j

pij
Q̇(rij)

Q(rij)

(
yj − yi
rij

)
− 2

Z

[∑
j

Q̇(rij)

(
yj − yi
rij

)]
.

(14)

3.2. Attractive and repulsive forces

The gradients in Eqs. (5) and (7) are viewed as the sum of forces for
SNE and t-SNE, respectively [3, 11]. In general, how the neighbor
embedding performs and how the nonlinear embedding behaves can
be interpreted by the physical properties from mechanics. Typically,
a mechanical system of N particles with mass m and positions yi
subject to the potential energy V (y1, . . . ,yN ) has the Lagrangian
[13]

L(y1, . . . ,yN , ẏ1, . . . , ẏN ) = T − V (15)
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SNE t-SNE p-SNE

Q(r) e−r
2

(1 + r2)−1 r−α

attraction 4pr 4pr
1+r2

2αp
r

repulsion 1
Z
4re−r

2 1
Z

4r
(1+r2)2

1
Z

2α
rα+1

Table 1. Q(r), attractive and repulsive forces for three SNEs.

p-SNE

SNE

t-SNE

(a)

p-SNE

t-SNE

SNE

(b)

Fig. 1. (a) Attractive and (b) repulsive forces in three SNEs.

where T = m
2

∑N
i=1‖ẏi‖

2 is the sum of all kinetic energies. This
equation of motion forN particles follows the Euler-Lagrange equa-
tion ∂L

∂yi
= d

dt
∂L
∂ẏi

so that we derive

Fi = mÿi = −
∂V

∂yi
(16)

which is regarded as the force exerted on particle yi. Because the
potential energy is physically comparable with the learning objective
V = L, the gradients in Eq. (5) for SNE and Eq. (7) for t-SNE are
seen as the negative forces which drive how particle or latent variable
yi is moving. The vector yj − yi implies the attractive force on yi
while yi − yj indicates the repulsive force on yi. Therefore, the
forces of SNE and t-SNE on a particle yi are expressed by

F sne
i = 4

∑
j

(pijrij − qijrij)
(
yj − yi
rij

)

F t-sne
i = 4

∑
j

(pij − qij)rij
1 + r2ij

(
yj − yi
rij

) (17)

where (yj − yi)/rij denotes the unit vector of force direction.
The magnitude of repulsive force from Eq. (14) is found by
2|
∑
j Q̇(rij)/Z| which is proportional to the decay rate of tar-

get similarity. The attractive and repulsive forces in SNE and t-SNE
are accordingly obtained and shown in Table 1. The corresponding
function Q(r) in Eq. (11) is also given. Importantly, the choice of
Q(r) is influential since the resulting forces are changed dramati-
cally. But, the spherical constraint in e-sSNE only constrains the
force with a lower bound.

3.3. Power-law distribution

Considering the mechanics of attractive and repulsive forces, we pro-
pose a new SNE, named as the p-SNE, by using the Pareto distribu-
tion [14] or the power-law distribution where Q(r) = 1/rα with
α > 0. Power-law distribution is behaved as a heavy-tailed distribu-
tion. This p-SNE is implemented by using the gradient ∂Lp-sne

∂yi
given

by

−2α
∑
j

pij
rij

(
yj − yi
rij

)
+

2α∑
k 6=l r

−α
kl

(∑
j

1

rα+1
ij

(
yj − yi
rij

))
.

(18)

The attractive and repulsive forces are obtained as given in Table 1.
Figure 1 compares the attractive and repulsive forces by using SNE
(blue), t-SNE (green) and the proposed p-SNE (orange) with α = 2.
We can see that p-SNE produces strong forces even the neighbor
distance r is small. The attractive and repulsive forces of p-SNE are
stronger than those of t-SNE in most circumstances. This leads to
widely separated particles of different affinities. The crowding prob-
lem in manifold learning is tackled due to the high-force motions for
neighbor embedding in the low-dimensional space.

4. EXPERIMENTS

4.1. Experimental setup

We conducted three sets of experiments on manifold learning and in-
vestigated the visualization by using different gray-scale image data
including (1) the MNIST handwritten digits [15], (2) the COIL-20
objects [16], and (3) the Olivetti faces [4]. First, the MNIST dataset
consists of 60,000 training images with 10 handwritten digits. Each
digit is centered in a size of 28×28. Second, the COIL-20 dataset
contains the images of 20 different objects. Each object has 72 an-
gles sampled from a 360◦ view. Totally, there are 1,440 images.
Each image has a resolution 128×128. In addition, the Olivetti faces
dataset comprises the images from 40 distinct persons. Each individ-
ual has 10 facial variations from viewpoints or expressions. All 400
Olivetti faces are in a size 64× 64.

In the implementation, the whitening process using PCA was
applied to all datasets. The image data were downsized to 50 di-
mensions such that some noises were suppressed but data structure
was still remained. Different SNEs were performed to reduce the
dimensionality from D = 50 to d = 2. α = 2 for p-SNE is set in
all experiments. In MNIST, we randomly select 3,000 images of 10
digits for evaluation. Different classes of digits, objects and faces are
shown in different colors. For comparison, we carry out the mani-
fold learning using SNE [3], t-SNE [4], e-sSNE [9] and the proposed
p-SNE and evaluated their two-dimensional data visualizations.

(a) SNE (b) e-sSNE

(c) t-SNE (d) p-SNE

Fig. 2. Visualization of MNIST digits using different SNEs.
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4.2. Experimental results

Figure 2 compares the visualizations of using four SNEs where
MNIST dataset is used. It is obvious that SNE does suffer from the
crowding problem where 10 digits in different colors are confus-
ing in two-dimensional space. Using e-sSNE, the digit images are
projected to the surface of a sphere due to the spherical constraint.
Crowding problem is considerably alleviated, but still several digits
are confusing. Using t-SNE, those confusing digits could be sep-
arated. However, p-SNE obtained a better separation with a wider
range for different digits with t-SNE. This is because that p-SNE
introduces stronger forces in dimensionality reduction than other
methods. The clustering performance can be also reflected by the
Davies-Bouldin index (DBI) [17] as shown in Figures 5(a)(b) where
the lowest DBI matches the true number of digits by using p-SNE.

(a) t-SNE (b) p-SNE

Fig. 3. Visualization of COIL-20 objects using t-SNE and p-SNE.

Figure 3 displays two-dimensional representations of 1,440 ob-
ject images by using COIL-20 dataset. 20 distinct classes are shown
by their colors. From Figures 5(c)(d), p-SNE demonstrates better
grouping for samples from the same class than t-SNE in terms of
DBI. We can see that p-SNE attains the clusters of samples which
easily converge into a single component for individual classes while
t-SNE may render the scattered pieces with disjoint components.
One also observes that p-SNE can learn the well-separated objects
with a large two-dimensional subspace in an unsupervised way.

We also compare the visualizations of 400 Olivetti faces from
40 distinct persons by using t-SNE and p-SNE as illustrated in Fig-
ures 4 and 5(e)(f). The corresponding faces can be found at the link
below1. Again, compared with t-SNE, p-SNE has stronger forces
to stimulate the movement of facial samples in the low-dimensional
space. Using t-SNE, a small set of classes are mixing while p-SNE
can produce well distributed and separated samples for 40 groups of
facial images. Here, p-SNE shows a stronger grouping capability
than t-SNE such that there are a smaller number of images of the
same person scattered with other persons. This is reflected by DBI.

5. CONCLUSIONS

We have presented a new unsupervised learning approach to dimen-
sionality reduction based on the stochastic neighbor embedding.
To characterize the neighbor probability of a data pair in the low-
dimensional subspace, this approach was evolved from SNE using
Gaussian distribution to t-SNE using t distribution, e-sSNE using
exit distribution, and then p-SNE using the power-law distribution.
In addition, we developed a general solution to SNE where any
form of decreasing function given by the distance measure of two
low-dimensional samples could be applied. A general divergence

1https://github.com/HHTseng/Power-law-SNE

(a) t-SNE (b) p-SNE

Fig. 4. Visualization of Olivetti faces using t-SNE and p-SNE.

(a) t-SNE, MNIST (b) p-SNE, MNIST

(c) t-SNE, COIL20 (d) p-SNE, COIL20

(e) t-SNE, Olivetti faces (f) p-SNE, Olivetti faces

Fig. 5. Davies-Bouldin indices of t-SNE and p-SNE in three tasks.

measure based on f divergence was introduced to design different
realizations of SNE with a variety of information measures. Im-
portantly, such a solution was not only derived in mathematics but
also interpreted in physics. We realized the SNE based on KL diver-
gence and compared the attractive and repulsive forces of different
SNEs in the low-dimensional spaces. It is found that the forces
for neighbor embedding using p-SNE are stronger than those using
other SNEs. This physical property provides an avenue to flexi-
bly reflect the neighboring of low-dimensional samples as well as
preserve the global structure or map for samples and clusters. The
crowding problem could be resolved. From the experimental results,
we know that the proposed p-SNE achieved a better performance in
two-dimensional visualization with larger data range and class sepa-
ration when compared with SNE, e-sSNE and t-SNE. This property
is also reflected by DBI. Future works will include the extension of
SNE by using other divergence measures and other decreasing func-
tions for joint probability of data pairs. A mixture of using different
measures or different functions and the effect of the corresponding
forces for clustering and classification will be also investigated.
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