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ABSTRACT

The density ridge framework for estimating principal curves
and surfaces has in a number of recent works been shown to
capture manifold structure in data in an intuitive and effec-
tive manner. However, to date there exists no efficient way
to traverse these manifolds as defined by density ridges. This
is unfortunate, as manifold traversal is an important problem
for example for shape estimation in medical imaging, or in
general for being able to characterize and understand state
transitions or local variability over the data manifold. In this
paper, we remedy this situation by introducing a novel mani-
fold traversal algorithm based on geodesics within the density
ridge approach. The traversal is executed in a subspace cap-
turing the intrinsic dimensionality of the data using dimen-
sionality reduction techniques such as principal component
analysis or kernel entropy component analysis. A mapping
back to the ambient space is obtained by training a neural
network. We compare against maximum mean discrepancy
traversal, a recent approach, and obtain promising results.

Index Terms— Manifold Learning, Dimensionality Re-
duction, Density Ridges, Neural Network

1. INTRODUCTION

Density ridges are estimates of principal manifolds, d-
dimensional smooth curves or surfaces that pass through the
middle of the data distribution. They play an important role in
the field of manifold learning and signal processing [1, 2, 3]
and have been used for tasks such as for example manifold
unwrapping [4], similarity clustering [5], and contour repre-
sentation [6]. However, there exists no efficient method for
manifold traversal in the density ridge framework.

Manifold traversal is an important technique for mod-
elling of shape priors for tasks such as image segmenta-
tion [7, 8] of Magnetic Resonance Images. Also, physical
processes often inhabit high dimensional spaces, where state
transitions or local variation can be seen as traversing along
a low dimensional manifold. One such example, in a health
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analytics setting, would be to have a set of patients repre-
sented by various measurements. Moving from a healthy to a
sick patient along the manifold could be interpreted as such
a state transition. Traversing the manifold can then help to
understand how the patient’s measurements change as the
patients status changes from healthy to sick.

Density ridge estimation is based on a non-parametric ker-
nel density estimate, which makes it a flexible and model free
method [1, 9]. Consequently, this also renders density ridge
based methods impractical in very high dimensional spaces
due to the inherent problems of density estimation in high di-
mensions. This makes it necessary to use dimensionality re-
duction techniques to learn the embedding function from the
high dimensional ambient space to a low dimensional sub-
space. Of great benefit here is the fact that the so-called man-
ifold assumption, where high dimensional data exhibits low
dimensional intrinsic manifold structure, has gathered signif-
icant empirical evidence in recent years [10, 11, 12, 7, 13].

In this work, inspired by the connection between density
ridges and differential geometry [4, 14], we propose a novel
algorithm for manifold traversal along a density ridge mani-
fold estimate. This is done by calculating smooth geodesics
along the estimated manifold. We use dimensionality reduc-
tion techniques to learn the embedding function from the high
dimensional ambient space to a low dimensional subspace
and traverse along geodesics in the intrinsic space. Exploiting
the power of neural networks [15] we learn a backprojection
from the low dimensional space back to the ambient space,
which allows us to illustrate effects of the manifold traversal
algorithm on the input data space.

2. METHOD

Our proposed workflow consists of three stages: Dimension-
ality reduction in the form of principal component analysis
(PCA) or kernel entropy component analysis (KECA) to cap-
ture the lower dimensional subspace (linear in the case of
PCA) containing the data, followed by estimating the under-
lying smooth manifold by density ridge estimation. Given
a smooth manifold estimate, we can perform operations in-
spired by differential geometry on the manifold such as, but
not limited to, estimating geodesic distances or isometric un-
folding. In the final stage the low dimensional data represen-
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tation is mapped back to the input space. We learn the inverse
mapping function using a two-layer neural network.

2.1. Dimensionality reduction

High-dimensional data often exhibits low dimensional struc-
ture that is nonlinear. Separating dimensionality reduction
and manifold estimation allows us to use established tech-
niques that capture the overall variation in the data as a first
stage. Take for example the swiss roll dataset [16], which
is a two-dimensional plane rolled up into a swiss roll shape,
and consider sampling from a noisy version of this shape in a
high dimensional space. Given a low level of noise, i.e. points
are not sampled too far from the manifold, we could reduce
the dimension of this set to three without interfering with the
nonlinear structure.

In principle any dimensionality reduction approach can
be used to reduce the dimension of the ambient space of the
manifold. We focus on the linear principal component anal-
ysis (PCA) [17] and the non-linear kernel entropy compo-
nent analysis (KECA) [18] approach in this work. PCA is a
widely used variance preserving linear dimensionality reduc-
tion method. KECA is an entropy preserving dimensionality
reduction method, which yields an embedding where the pro-
jected subspace captures the largest amount of Renyi entropy
as represented by a Parzen window estimate.

2.2. Manifold estimation using density ridges

Once the ambient dimension is reduced, the structure of the
manifold can be estimated. In this work we use the density
ridge framework of Ozertem and Erdogmus [1], which can be
estimated by solving an initial value problem [19]. Density
ridges are estimates of principal manifolds, d-dimensional hy-
persurfaces that pass through the middle of the data. Gen-
ovese et al. [9] showed that given noisy data sampled from a
manifold, the density ridges are close to the underlying mani-
fold bounded by Hausdorff distance and are thus good candi-
dates for estimating manifolds.

Given data points X ∈ RD sampled with additive noise
Φσ = N(0, σI) from some distribution W supported along
a manifold M , we can define the probability density func-
tion [9]:

p(x) = W ∗ Φσ, (1)

where ∗ denotes convolution [9]. The density ridges are then
defined through the gradient g(x)

.
= ∇T p(x) and the Hessian

matrix H(x)
.
= ∇T∇p(x) of the probability density p(x):

Definition 1 (Ozertem 2011) A point x is on the d-dimensional
ridge,R, of its probability density function, when the gradient
g(x) is orthogonal to at least D − d eigenvectors of H(x)
and the corresponding D − d eigenvalues are all negative.

We express the spectral decomposition of H as H(x) =
Q(x)Λ(x)Q(x)T , where Q(x) is the matrix of eigenvectors

sorted according to the size of the eigenvalue. Furthermore
Q(x) can be decomposed into

[
Q⊥(x) Q‖(x)

]
, where Q⊥

are the d first eigenvectors of Q(x), and Q‖ are the D − d
smallest. The latter is referred to as the orthogonal subspace
due to the fact that when at a ridge point, all eigenvectors in
Q⊥ will be orthogonal to g(x).

This motivates the following initial value problem for pro-
jecting points onto a density ridge:

dyt
dt

= VtV
T
t g(yt), (2)

where Vt = Q⊥(x(t)) at yt = y(t), and y(0) = x. We
denote the set of y’s that satisfy equation (2), calculated via
the kernel density estimator f̂(x), as the d-dimensional ridge
estimator M̂ .

Finally, given an estimate, M̂ , of the underlying manifold,
we can introduce concepts from differential geometry that al-
low smooth operations on the manifold.

2.3. Manifold traversal

Intuitively, manifold traversal can be performed in two differ-
ent ways:

• By piece-wise traversal along a tangent vector followed
by a mapping onto the manifold (exponential map1).

• If the end point of the traversal is known, calculating
the geodesic path between the start and end point and
following it corresponds to traversal along the mani-
fold.

Both concepts are closely related, but in this work we adopt
the latter framework and calculate smooth geodesics between
points on the manifold as estimated by the density ridge.

We start by recalling that a geodesic is informally defined
as the shortest distance between two points on a manifold
given that the path between the points is constrained to lie
completely on the manifold. A complete formal definition can
be found in Lee [14]. Hauberg et al. [12] showed that given a
metric tensor at each point of the manifold solving the Euler
Lagrange equation admits a computationally tractable scheme
for finding geodesics through solving a system of differential
equation. As the density ridge framework does not explicitly
provides a metric tensor, we instead use an iterative scheme
taking advantage of the following connections between ker-
nel density ridges and topics from differential geometry (all
concepts can be found in complete detail in [14]): (1) The top
d Hessian eigenvectors, Q‖, span the tangent space of M̂ at
x. This gives an estimate of the tangent bundle of M through
M̂ . (2) The density ridge projections correspond, under some
constraints, to an approximate exponential map if sufficiently
close to some local mode.

1The exponential map maps a vector in the tangent space of a manifold to
the endpoint of the geodesic of the same length starting in the same point.

2343



These properties allows alternating between shortening
the path between two points and projecting the solution back
onto the density ridge. Formally, given a sequence of points
{γi}ni=1 between two points, x,y ∈ M the problem of find-
ing a shortest path constrained to the manifold is formulated
as follows [11]:

minimize
γ

n∑
l=2

||γl − γl−1||2

subject to γ1 = x, γn = y, γ ∈M.

(3)

To minimize (3) the path γ is initialized using Dijkstra’s al-
gorithm and further discretized with linear interpolation be-
tween the n given points. Then minimization is performed
by alternating between gradient descent to minimize distance
and density ridge projection to project points back onto the
manifold. Combined with the back-projection scheme pre-
sented in Section 2.4 the geodesics gives smooth interpolation
in the ambient space of the manifold.

2.4. Reconstruction

Finally, to map the traversal along the low dimensional den-
sity ridge estimate back to the ambient data space, we use
a two layer neural network with 50 hidden units, which is
trained to reconstruct the input data from the low dimensional
vectors. We note that PCA has an inverse mapping, which
would avoid the need for training. However, due to the radical
reduction of dimensions, our results illustrate that the more
powerful neural network is generally more capable of approx-
imating the inverse mapping. For the KECA dimensionality
reduction no inverse mapping exists, such that learning of a
mapping is required.

The size and number of hidden units in the network were
chosen by manual tuning. In our experiments we found that
the number of hidden units used in the reconstruction stage
was quite robust, however, for future research we will investi-
gate more precise and methodical ways of tuning this param-
eter.

2.5. Summary of workflow

A summary of the workflow is presented in Figure 1, where
interpolation is performed between a smiling and a frowning
image from the Frey face dataset. The top and bottom im-
age in the final stage correspond to the original images, while
the middle images are results from geodesic interpolation and
backprojection through the neural network.

3. EXPERIMENTAL RESULTS

We evaluate our method on two real-world datasets, the ones
in the MNIST dataset [20] and the Frey Faces dataset2. The

2Obtained with kind permission from Brandon Frey, University of
Toronto.
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Fig. 1: Summary of workflow: φ is either PCA or KECA, φ−1

is the backprojecting neural network, and M̂ is the density
ridge estimate of the manifold. The images corresponds to
the experiments in Section 3.2.

pixel space of these datasets represents high-dimensional
data, which has a low dimensional manifold structure.

3.1. MNIST

The intrinsic dimensionality of the MNIST dataset was esti-
mated using the methods of Lombardi et al. [21] and Ceruti
et al. [22], which indicate a ten dimensional manifold struc-
ture – also corroborated by the work of Sun and Marchand-
Maillet [23]. When reducing the dimensionality to ten di-
mensions using PCA, we observe a smooth manifold structure
(see Figure 2a for the first three PCA dimensions), however,
we also note that the manifold is curved along several dimen-
sions (see Figure 2b for an example). Figure 2c shows the re-
sult of our approach, where the leftmost and rightmost image
are the start and final image of our traversal from the original
dataset, respectively. All remaining images are generated by
following the geodesic and projecting points back to the high
dimensional ambient space. We note that the orientation of
the one smoothly changes from leaning left to being straight.

We compare our approach of traversing manifolds along
the geodesic with the alternative method of using the maxi-
mum mean discrepancy (MMD) [24] trajectory, as presented
in Gardner et al. [13], to move between two data points. Fig-
ure 3 illustrates the above experiment using MMD. Figures 3a
and 3b show the first steps of the MMD trajectory in the
first three and second to fourth PCA dimension, respectively.
We observe that the MMD trajectory clearly does not follow
the manifold structure and therefore results in a considerably
worse reconstruction (Figure 3c). Note that using the differ-
ence between means (MMD) to describe a trajectory along
the manifold, is clearly not sufficient.
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Fig. 2: Manifold traversal on MNIST. (a) PCA dimensions 1
to 3. (b) PCA dimensions 2 to 4. (c) The estimated ridge and
the generated images when traversing the geodesic path (red
line). The illustrated images are generated via the backpro-
jection and are not in the original dataset.

3.2. Frey Faces

Figure 4a shows the density ridge estimate for the Frey Face
dataset after dimensionality reduction using KECA. For visu-
alization purposes we reduce the number of dimensions to
three in the dimensionality reduction step. Similar to the
MNIST dataset we observe a smooth manifold structure. Fig-
ure 4 illustrates the results of traversing from a frowning face
along the geodesic (red line in Figure 4a) to a smiling image.
The first image (top left) is the original start image, and the
bottom right is the original end image, whereas images in-
between do not exist in the original dataset and are generated
using our proposed method. Initially, the main change in the
images appears to be the rotation of the face, however, as we
move closer to the smiling image the facial expression of the
generated images clearly changes as well.

4. CONCLUSION

This work solves the problem of manifold traversal in the den-
sity ridge framework based on a novel method to estimate
geodesics. We have shown that our low dimensional mani-
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Fig. 3: Manifold traversal on MNIST using MMD. (a) PCA
dimensions 1 to 3. (b) PCA dimensions 2 to 4. (c) The es-
timated ridge and the generated images following the MMD
trajectory (red line).
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Fig. 4: Interpolating between frowning and smiling images
using KECA for dimensionality reduction. (a) The density
ridge estimate for the top three entropy components of the
Frey Faces dataset. The red line indicates the geodesic be-
tween a smiling and a frowning face. (b) The reconstructed
images along the geodesic.

fold approaches can model realistic complex shape variation
and smooth transitions (or interpolations) can be achieved for
real-world datasets. We compare our method to an established
manifold traversal method, showing promising results.
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