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ABSTRACT

Many signal and image processing applications, including
SAR polarimetry and texture analysis, require the classifica-
tion of complex covariance matrices. The present paper in-
troduces a geometric learning approach on the space of com-
plex covariance matrices based on a new distribution called
Riemannian Gaussian distribution. The proposed distribution
has two parameters, the centre of mass Ȳ and the dispersion
parameter σ. After having derived its maximum likelihood
estimator and its extension to mixture models, we propose an
application to texture recognition on the VisTex database.

Index Terms— Classification, Hermitian matrices, Infor-
mation geometry, Riemannian centre of mass, EM algorithm.

1. INTRODUCTION

Covariance matrices are used as features for many signal and
image processing applications, including biomedical image
segmentation [1], radar detection [2, 3], texture analysis and
scene recognition [4–6], etc. These covariance matrices are
used to model different kinds of dependence such as the spa-
tial, spectral and temporal ones to cite a few of them. An
interesting space of covariance matrices is the manifold Hm
of m × m Hermitian positive definite matrices. This latter
is involved for example in radar detection, polarimetric SAR
image classification [7], texture recognition [8], etc.

Many works have been dedicated in the literature for the
statistical modelling of covariance matrices. Due to its math-
ematical tractability, the Wishart distribution is certainly the
most largely used model in the literature [9,10]. Nevertheless,
this model assumes Gaussian statistics for the observations
which may not be realistic in practice. More advanced mod-
els have hence been proposed based on the so-called scalar
product model. These compound models include the K [11],
G0 [12] and KummerU [13] distributions. They have shown
promising results notably for the classification of high reso-
lution polarimetric SAR images. Inspired from clustering ap-
proaches on Riemannian manifolds [14, 15], there is another
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way to model covariance matrices. By considering Rao’s
distance on the manifold of covariance matrices, there is a
canonical way to define the mean or barycentre of several co-
variance matrices in this manifold. Based on this concept,
the Riemannian Gaussian distribution (RGD) has been intro-
duced to model the statistical variability of real covariance
matrices [16]. This distribution is represented by two param-
eters: its unique mode Ȳ (the unique Riemannian centre of
mass) and σ its dispersion away from Ȳ . An important prop-
erty of the RGD is that the maximum likelihood estimates
of its parameters admit simple expressions and can be com-
puted numerically using different algorithms. However, this
RGD has only been proposed on the space Pm of m×m real
symmetric and strictly positive definite matrices. The main
contribution of the paper is to extend this RGD to the space
of Hermitian positive definite matrices. Moreover, based on
mixture models of RGDs, a new geometric learning approach
onHm is proposed. This approach is highlighted by an appli-
cation on the classification of texture images.

The paper is structured as follows. Section 2 recalls some
elements on the Riemannian geometry of Hm. Section 3 in-
troduces the proposed Riemannian Gaussian distribution on
Hm and its extension to mixture models. An expectation-
maximization (EM) algorithm is presented to estimate the dis-
tribution parameters. Section 4 presents an application to im-
age classification on the VisTex database. Some comparisons
with the Wishart model are given to evaluate the potential of
the proposed model in the context of texture image classifi-
cation. Conclusions and future works are finally discussed
in Section 5. Note that due to the restriction length, most of
the mathematical proofs can not be detailed here and will be
given in a forthcoming journal paper.

2. RIEMANNIAN GEOMETRY OFHm

This section recalls basic facts on the Riemannian geometry
of Hm, the space of Hermitian positive definite matrices of
size m × m. In many applications, Hm is considered as
a Riemannian manifold, equipped with the so-called affine-
invariant Riemannian metric. For Y ∈ Hm, this metric is
given by the scalar product

gY (A,B) = tr(Y −1AY −1B) (1)
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where A,B are two Hermitian matrices of size m ×m. The
Riemannian distance associated to g is the following

d(Y,Z) =

√
tr
[
log
(
Y −1/2ZY −1/2

)]2
(2)

For more details, the interested reader is referred to [17–19].
The reason for using the Riemannian metric (1) with the

resulting Riemannian distance (2) is that these provide par-
ticularly suitable mathematical properties [17, 18, 20] which
are

(i) invariance by all affine transformations.

(ii) existence and uniqueness of Riemannian barycentres.

First, let us consider the property of invariance by affine trans-
formations [17,18]. An affine transformation ofHm is a map-
ping Y 7→ G · Y , where G is an invertible complex matrix of
size m×m. This is given by

G · Y = GY G∗ (3)

where ∗ denotes the conjugate transpose. With regard to the
Riemannian distance (2), invariance by affine transformations
means that for all Y,Z ∈ Hm

d(Y,Z) = d(G · Y,G · Z) (4)

where G · Y and G · Z are defined by (3).
Affine transformations are of special importance in the

study of the space Hm since for any Y ∈ Hm there exists
G such that Y = G · Im where Im ∈ Hm is the identity ma-
trix. Replacing this transformation in (4) gives the following
identity

d(Y,Z) = d(Im, G
−1 · Z) (5)

This will be used in the next section.
Consider the second property of existence and uniqueness

of Riemannian barycentres [20]. The barycentre of N points
Y1, · · · , YN ∈ Hm is defined to be

ŶN = arg min
Y

N∑
n=1

d2(Y, Yn) (6)

where d(Y, Yn) is the Riemannian distance (2).
As a Riemannian manifold with non-positive sectional

curvature [21], Hm enjoys the important property of exis-
tence and uniqueness of barycentres as defined by (6) [20].

Before going on, let us consider the concept of invariant
integration on Hm. The invariant integral of a function f :
Hm → R is given by∫
Hm
f(Y )dv(Y ) =

∫
. . .

∫
f(Y )det(Y )−m

∏
i≤j

dReYij
∏
i<j

dImYij

(7)

where the subscripts i and j denote matrix elements, while
Re and Im denote respectively the real and imaginary parts.
In (7), dv(Y ) is the Riemannian volume onHm defined by

dv(Y ) = det(Y )−m
∏
i≤j

dReYij
∏
i<j

dImYij (8)

The integral (7) is called an invariant integral because of
the following property∫

Hm
f(Y )dv(Y ) =

∫
Hm

f(G · Y )dv(Y ) (9)

where G ·Y is the affine transformation given by (3) and G is
any invertible complex matrix.

The invariant integral (7) takes on a simplified form
when the function f is a central function. This means
that f(Y ) only depends on the eigenvalues of Y . Pre-
cisely, let the spectral decomposition of Y be given by
Y = U diag(er1 , · · · , erm)U∗, where U is a unitary ma-
trix and er1 , · · · , erm are the eigenvalues of Y . The function
f is a central function if f(Y ) = f(r1, . . . , rm).

In this case, the invariant integral (7) reduces to

C ×
∫
Rm

f(r1, · · · , rm)
∏
i<j

sinh2

(
|ri − rj |

2

)
dr (10)

where dr = dr1 · · · drm and C is a constant [17].

3. RIEMANNIAN GAUSSIAN DISTRIBUTIONS ON
Hm

This section contains the definition and the main statistical
properties of the Riemannian Gaussian distribution (RGD) on
Hm [17]. This distribution is introduced to give a statistical
interpretation of the Riemannian barycentre onHm, which is
used in many signal and image processing applications [18,
19, 22].

3.1. Definition

The probability density function of the RGD on Hm, with
respect to the Riemannian volume element (8), is given by

p(Y | Ȳ , σ) =
1

ζ(σ)
exp

[
−d

2(Y, Ȳ )

2σ2

]
(11)

where Ȳ ∈ Hm and σ > 0. In this definition, ζ(σ) is the
normalizing constant given by

ζ(σ) =

∫
Hm

exp

[
−d

2(Y, Ȳ )

2σ2

]
dv(Y ) (12)

The fact that it does not depend on Ȳ can be derived from (5),
by taking Z = Ȳ , and by replacing it in (9). Moreover, re-
placing Ȳ with the identity matrix Im in (12) and using (10),
ζ(σ) can be expressed as

ζ(σ) = C ×
∫
Rm

e−|r|
2/2σ2 ∏

i<j

sinh2 (|ri − rj |/2) dr (13)
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where |r| is the Euclidean norm of r and C is the constant
appearing in (10). In practice, the function ζ(σ) can be com-
puted by Monte Carlo integration. Interestingly, for m = 2,
ζ(σ) admits a closed-form expression which is proportional
to σ2(eσ

2 − 1). In the following, the RGD (11) will be de-
noted by G(Ȳ , σ).

Algorithm 1 below describes a simple way to sample from
G(Ȳ , σ). Note that step 2 can be achieved by a Metropolis-
Hastings algorithm.

Algorithm 1 Sampling from G(Ȳ , σ)

1: Generate U from a uniform distribution on the group of
unitary matrices of size m×m

2: Generate (r1, · · · , rm) ∈ Rm from the distribution ∝
e−|r|

2/2σ2 ∏
i<j sinh2 (|ri − rj |/2)

3: X ← U · diag(er1 , · · · , erm)
4: Y ← Ȳ 1/2 ·X

3.2. Maximum likelihood estimates of Ȳ and σ

Let Y1, . . . , YN be N i.i.d samples from G(Ȳ , σ) and let ŶN
be the barycentre of Y1, . . . , YN . Based on these observations,
the maximum likelihood estimate (MLE) of Ȳ is the Rieman-
nian barycentre ŶN . Moreover, the MLE of σ is the solution
σ̂N of

σ3 × d

dσ
log ζ(σ) =

1

N

N∑
n=1

d2(ŶN , Yn)

It can be proved that both ŶN and σ̂N exist and are unique
[17].

For the main application of this paper, numerical compu-
tations of ŶN and σ̂N are needed. Computation of ŶN con-
sists in finding the Riemannian barycentre of Y1, . . . , YN , de-
fined by (6). This can be done using the Riemannian gradient
descent algorithm, which may be found in [23]. The kth iter-
ation of this algorithm produces an approximation Ŷ k

N of ŶN
in the following way. For k = 1, 2, . . . , let ∆k be the Hermi-
tian matrix ∆k =

∑N

n=1 Log
Ŷ
k−1

N

(Yn) where Log denotes
the Riemannian logarithm mapping, inverse to the exponen-
tial mapping, given by

ExpY (∆) = Y 1/2 exp
(
Y −1/2 ∆Y −1/2

)
Y 1/2

Then, Ŷ k

N is defined to be Ŷ k

N = Exp
Ŷ
k−1

N

(τk ∆k) where
τk > 0 is a step size, which can be determined using a back-
tracking procedure.

The Riemannian gradient descent algorithm is repeated as
long as ‖∆k‖ > ε , where ‖∆k‖ =

√
g
Ŷ
k−1

N

(∆k,∆k) and ε

is a precision parameter. In practice ε is set to the machine
precision. This algorithm is guaranteed to converge, when

a suitable backtracking procedure is used, regardless of the
initialization Ŷ 0

N,.
On another hand, computation of σ̂N requires solving a

non-linear equation with one variable. This is readily done
using Newton’s method.

3.3. EM algorithm for mixture estimation

Mixture distributions are effective tools in statistical learning
problems as they provide a good approximation to most dis-
tributions. The present paper applies this approach to learn
distributions on Hm. A mixture of RGD on Hm is any prob-
ability distribution with density, with respect to the volume
element (8), of the form

p(Y |($µ, Ȳµ, σµ)1≤µ≤M ) =

M∑
µ=1

$µ × p(Y | Ȳµ, σµ) (14)

where $µ ∈ (0, 1) are weights with sum one and where each
p(Y | Ȳµ, σµ) is a RGD onHm given by (11).

Let Y1, . . . , YN be independent samples from (14). Based
on these samples, the MLE of ϑ = {($µ, Ȳµ, σµ)} can be
computed using an EM algorithm similar to [16,17]. For this,
define for all ϑ = {($µ, Ȳµ, σµ)},

ωµ(Yn, ϑ) =
$µ × p(Yn| Ȳµ, σµ)∑M
s=1$s × p(Yn| Ȳs, σs)

, Nµ(ϑ) =

N∑
n=1

ωµ(Yn)

The EM algorithm iteratively updates ϑ̂ = {($̂µ, Ŷµ, σ̂µ)} ,
which is an approximation of the MLE of ϑ = ($µ, Ȳµ, σµ)

as follows. Based on the current value of ϑ̂, it updates $̂µ, Ŷµ
and σ̂µ as follows:

I Assign to $̂µ the value $̂µ = Nµ(ϑ̂)/N

I Assign to Ŷµ the value

Ŷµ = arg min
Y

N∑
n=1

ωµ(Yn, ϑ̂) d2(Y, Yn)

I Assign to σ̂µ the value

σ̂µ = Φ
(
N−1
µ (ϑ̂)×

∑N
n=1 ωµ(Yn, ϑ̂) d2(Ŷµ, Yn)

)
where the function Φ is the inverse of σ 7→ σ3 ×
d
dσ log ζ(σ).

Consider now the problem of classifying new observa-
tions modeled as a realization of (14). Following [16, 17],
a new observation Yt is associated to the class Cµ∗ of the
closest cluster, i.e.

µ∗ = argminµ

{
− log $̂µ + log ζ(σ̂µ) +

d2(Yt , Ŷµ)

2σ̂2
µ

}
This classification rule is optimal in the sense of a Bayesian
risk criterion given in [24].
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4. APPLICATION TO TEXTURE IMAGE
CLASSIFICATION

This section presents an application of the RGD on Hm for
the classification of texture images. The performance of this
distribution is first compared with the RGD onPm. Second, it
is compared with Wishart distribution. Third, the influence of
the wavelet decomposition on the classification performance
is evaluated. For this purpose, the following numerical exper-
iment on the VisTex database [25] is carried out.

For each texture image of size 512 × 512 pixels, 196
subimages (128 × 128) are extracted with a 32 pixel over-
lap. For each subimage, 6 subbands were computed using the
complex Gabor filter. Then, two spatial neighborhoods (i.e.
horizontal dH and vertical dV ) of one pixel are considered.
Each subband s of subimage n is composed by a set of two
bivariate populations Πs,n,dH and Πs,n,dV , represented re-
spectively by their Hermitian covariance matrices Ys,n,dH and
Ys,n,dV ∈ H2. These covariance matrices are features which
describe the spatial dependence of subband coefficients. The
size of the feature space is hence F = 12 (2 spatial neigh-
borhood and 6 subbands). To summarize, each subimage n is
represented by a set of F covariance matrices denoted Yf,n.
Then, the database is equally divided for the classification,
where half is used for training and the other half for testing.
For each training class, a mixture model is learned by con-
sidering the EM algorithm described in Section 3.3. In this
experiment, the number of clusters per class (denoted K) is
set to 1, 3 or automatically fixed by optimizing the Bayesian
information criterion (BIC) [26]. It results that each texture
is represented by a set of K clusters containing the maximum
likelihood estimates ($̂a, Ŷf,a, σ̂f,a), for a = 1, . . . ,K and
f = 1, . . . , F . Then, as the subband are assumed indepen-
dent, a test subimage t represented by a set of F covariance
matrices Yf,t in H2 is associated to the class of the closest
cluster C∗, i.e. the one realizing the minimum over c of

− log $̂c +

F∑
f=1

logZ(σ̂f,c) +

F∑
f=1

d 2(Yf,t, Ŷf,c)

2σ̂2
f,c

Table 1 displays the classification performance in terms
of kappa accuracy (mean ± standard deviation) on the Vis-
Tex database. The first line gives the results for the RGD
with respectively K = 1, K = 3 and K fixed by the BIC
criterion. The second line shows the corresponding results
for the Wishart model. Moreover, the second column in Ta-
ble 1 shows the results with the Hermitian covariance matri-
ces inHm, while the first column exhibits the results obtained
for real covariance matrices (obtained by taking the absolute
value of the Gabor subbands) in Pm.

As shown in Table 1, for each model, a significant gain of
more than 2% is observed by working onHm rather than Pm.
Note also, that the use of the BIC criterion improved the clas-
sification performance compared to a fixed number of clusters

model number of modes (K) on Pm onHm

RGD
K=1 78.24± 0.36 80.62± 0.46
K=3 90.24± 0.40 92.24± 0.32
BIC 91.91± 0.45 94.29± 0.30

Wishart
K=1 81.93± 0.51 82.15± 0.50
K=3 86.07± 0.61 87.27± 0.71
BIC 86.14± 0.44 87.64± 1.06

Table 1: Classification performance (κ accuracy) on the Vis-
Tex database.

Wavelet RGD Wishartdecomposition
Gabor 94.29± 0.30 87.64± 1.06
CWT 98.03± 0.25 97.61± 0.26

DT-CWT 98.79± 0.17 98.32± 0.30

Table 2: Influence of the wavelet decomposition on the clas-
sification performance (κ accuracy) on the VisTex database.

(K = 1 or 3). Finally, while having the same complexity in
terms of number of parameters, the mixture models for the
proposed RGD have a significant gain of 4% to 7% compared
to the mixture of Wishart model.

A second experiment is carried out on the same database
to evaluate the influence of the wavelet decomposition on
the classification performance. For that, three decomposi-
tions have been considered, which are the Gabor filters, the
complex wavelet transform (CWT) and the dual-tree complex
wavelet transform (DT-CWT). Here, the number of modes is
fixed by optimizing the BIC criterion. As observed in Table 2,
the best results are obtained with the DT-CWT. Note also that
for each wavelet decomposition, the proposed RGD model
leads to better performances compared to the Wishart model.
This illustrates the potential of the proposed geometric learn-
ing approach onHm.

5. CONCLUSION

In this paper, the Riemannian Gaussian distribution (RGD)
has been introduced on the space Hm of Hermitian positive
definite matrices. This distribution has a one to one similar-
ity with the RGD on the space Pm, of m × m positive def-
inite matrices, previously introduced in [16]. The proposed
RGD has two parameters: the unique Riemannian centre of
mass Ȳ and the dispersion parameter σ. Once having pre-
sented the maximum likelihood estimators and the extension
of the RGD to mixture models, an experiment on the VisTex
database has been carried out to illustrate the potential of the
proposed model for texture image classification. A signifi-
cant gain has been observed compared to the state-of-the-art
Wishart model.

Further works will focus on the generalization of the RGD
model to structured covariance matrices (e.g. Toeplitz, block
Toeplitz matrices).
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