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ABSTRACT

In this paper, a novel embedded clustering (EC) method is
derived from the perspective of extending the supervised or-
thogonal least square discriminant analysis (OLSDA) method
to the unsupervised case, which proves to be closely re-
lated to k-means. To achieve more statistical and structural
properties, the robust learning of unsupervised OLSDA is in-
vestigated to further derive the unsupervised robust OLSDA
(ROLSDA) problem. For the convenience of solving the
proposed ROLSDA problem, re-weighted counterpart of
ROLSDA is utilized with self-adaptive weight, such that
the smaller weight would be assigned to the term with larger
outliers automatically. Consequently, aforementioned EC
method is proposed with not only the robust outliers but also
the optimal weighted cluster centroids. Comparative exper-
iments are presented to show the effectiveness of the EC
method under the proposed ROLSDA problem.

Index Terms— Embedded clustering, least square dis-
criminant analysis, robust learning, re-weighted problem.

1. INTRODUCTION

Orthogonal least square discriminant analysis (OLSDA) [1]
serves as a pretty significant supervised technique for dimen-
sionality reduction [2, 3, 4, 5, 6, 7, 8]. OLSDA method is
derived from minimizing the discriminative information in
data. In other words, OLSDA method virtually minimizes
the within-class scatter matrix from the viewpoint of the least
square regression. To achieve great discriminative power, the
projected data in the same class are expected to be regressed
to a single vector with the purpose of seeking an orthogonal
projection, such that the error of square regression is mini-
mized.

In this paper, former supervised OLSDA method is fur-
ther extended to the unsupervised case. By virtue of revisiting
both OLSDA and orthogonal centroid method (OCM) [9], a
brand new least square form of unsupervised OLSDA can
be derived. Besides, the proposed unsupervised OLSDA
problem is proved to be closely related to k-means [10].
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Moreover, robust OLSDA (ROLSDA) problem is further pro-
posed and investigated via robust learning[11, 12, 13, 14]. To
unravel the proposed ROLSDA problem, re-weighted coun-
terpart of ROLSDA is utilized with self-adaptive weight, such
that the smaller weight would be assigned to the term with
larger outliers automatically. Accordingly, a novel embed-
ded clustering (EC) method is derived from the proposed
ROLSDA problem with both the robust outliers and the opti-
mal weighted cluster centroids.

The rest of the paper is organized as follows. Section 2 re-
visits the OLSDA and the OCM methods. Section 3 extends
supervised OLSDA to the unsupervised OLSDA with a novel
least square form. Consequently, EC method is derived from
the unsupervised robust OLSDA problem. In Section 4, com-
parative experiments are presented to show the effectiveness
of the proposed EC method. Section 5 concludes the paper.

2. ORTHOGONAL LEAST SQUARE DISCRIMINANT
ANALYSIS REVISITED

Given the training dataset X = {(xi, ci)|xi ∈ Rd×1; i =
1,2, . . . ,n} and related data matrix X = [x1,x2, . . . ,xn] ∈
Rd×n which are distributed in c different classes with dimen-
sion d and data number n, each data point xi is associated
with a class label ci ∈ {1,2, . . . c}. Denote Xi is the dataset
of i-th class and ni is the number of data points in i-th class,
then the within-class scatter matrix Sw, the between-class
scatter matrix Sb and the total-class scatter matrix St are
defined as follows:

Sw =

c∑
i=1

∑
x∈Xi

(x− x̄i)(x− x̄i)
T

Sb =

c∑
i=1

ni(x̄i − x̄)(x̄i − x̄)T

St =

n∑
i=1

(xi − x̄)(xi − x̄)T

(1)

where x̄i =
1
ni

∑
xj∈Xi

xj is the class-specific mean of the
i-th class and x̄ = 1

n

∑n
i=1 xi is the global mean. The least
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squared loss function could be illustrated as:

ε = ‖T1 −T2‖2F (2)

where ‖ · ‖2F represents Frobenius norm. Define A(t) = 1
n11T

and

A
(w)
ij =

{
1

nci
ci = cj

0 otherwise

where 1 = (1,1, . . . ,1)T ∈ Rn×1. By substituting T1 =
WTX and T2 = WTXA(w) in Eq. (2) with orthogonal
constraint WTW = I,W ∈ Rd×k, we have

‖WTX−WTXA(w)‖2F= Tr(WTX(I−A(w))2XTW)

= Tr(WTSwW)
(3)

which is the objective function of OLSDA discussed in [1].
Similarly, we could further set T1 = WTX and T2 = WT

XA(t) in Eq. (2) as

‖WTX−WTXA(t)‖2F= Tr(WTX(I−A(t))2XTW)

= Tr(WTStW)
(4)

with orthogonal constraint WTW = I.
In terms of Eqs. (3) and (4), the objective function of

OCM [9] could be rewritten as

Tr(WTSbW)= Tr(WT(St − Sw)W)

= Tr(WTX(I−A(t) − I + A(w))XTW)

= Tr(WTX(A(w) −A(t))XTW)
(5)

due to the idempotent matrices A(t) and A(w), i.e., (A(t))2 =
A(t) and (A(w))2 = A(w).

3. ROBUST ORTHOGONAL LEAST SQUARE
DISCRIMINANT ANALYSIS

Based on Eqs. (4) and (5), the total-class scatter St and the
between-class scatter Sb in (1) could be further reformulated
into {

St = XHXT

Sb = XHY(YTY)−1YTHXT
(6)

where Y ∈ Rn×c is the binary label matrix and H = I−A(t)

is the centering matrix. Based on Eq. (6), OLSDA in (3) could
be rewritten as

min
WTW=I

Tr(WTSwW) = min
WTW=I

Tr(WT(St − Sb)W)

= min
WTW=I

Tr(WTXH(I−Y(YTY)−1YT)HXTW)

= min
WTW=I

‖WTXH(I−Y(YTY)−1YT)‖2F
(7)

which serves as a special case of problem (2) by letting
T1 = WTXH and T2 = WTXHY(YTY)−1YT, re-
spectively.
• Relationship between OLSDA in (7) and k-means.

The k-means problem [10] can be recapitulated as

min
F,G∈ind

‖T− FGT‖2F (8)

where each column of matrix F ∈ Rk×c represents the clus-
ter centroid and each row of the indicative matrix G ∈ Rn×c

demonstrates the binary label. If the associated label of data
T ∈ Rk×n is known, i.e., indicative matrix G is fixed as bi-
nary label Y in (8), the k-means problem degenerates to

min
F
‖T− FYT‖2F = ‖T−TY(YTY)−1YT‖2F. (9)

By further replacing the data T with the centralized
projected data WTXH ∈ Rk×n in Eq. (9), we notice
that the problem (9) is same as the problem (7). In other
words, OLSDA in (7) is equivalent to k-means in (8) when
T = WTXH and G = Y. Accordingly, OLSDA in (7)
could be naturally extended to the unsupervised case as

min
WTW=I,F,G∈ind

‖WTXH− FGT‖2F. (10)

• Embedded clustering via Robust OLSDA.
Based on the unsupervised OLSDA in (10), robust OLSDA

(ROLSDA) could be proposed as

min
WTW=I,F,G∈ind

‖WTXH− FGT‖2,1. (11)

Motivated by [11, 12], we could utilize the re-weighted coun-
terpart of ROLSDA in (11) for the convenience as

min
WTW=I,F,G∈ind

‖(WTXH− FGT)D
1
2 ‖2F

= min
WTW=I,F,G∈ind

n∑
i=1

Dii‖WTx
(H)
i − Fgi‖22

(12)

where diagonal weight matrix D is to be updated iteratively in
the algorithm with Dii ← 1

2‖WTx
(H)
i −Fgi‖2

. Besides, x
(H)
i

and gi are i-th columns of XH and GT, respectively. Actu-
ally, the proposed re-weighted ROLSDA in (12) is connected
with self-adaptive weight D such that re-weighted ROLSDA
not only has robust outliers but achieves the optimal weighted
cluster centroids as well.

Since the centroid matrix F is free from any constraint in
(12), the extreme value condition w.r.t. F could be inferred
that

∂‖(WTXH− FGT)D
1
2 ‖2F

∂F
= 0

⇒ ∂Tr(FGTDGFT − 2WTXHDGFT)

∂F
= 0

⇒ F = WTXHDG(GTDG)−1.

(13)
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Table 1. Comparisons of error rate and NMI for 4 methods
as k-means[10], RMKMC[16] and unsupervised OLSDA[1]
over 3 different datasets are performed .

Error rate
Dataset AR GT USPS

k-means[10] 0.3975 0.4117 0.4530
RMKMC[16] 0.3771 0.3912 0.4228

OLSDA[1] 0.3826 0.4006 0.4219
EC(our) 0.3611 0.3773 0.4200

NMI
Dataset AR GT USPS

k-means[10] 0.6556 0.6942 0.6258
RMKMC[16] 0.6723 0.7250 0.6547

OLSDA[1] 0.6730 0.7334 0.6124
EC(our) 0.6882 0.7483 0.6609

Consequently, re-weighted ROLSDA in (12) degenerates
to

min
WTW=I,G∈ind

‖(WTXH− FGT)D
1
2 ‖2F (14)

where F = WTXHDG(GTDG)−1. Via the coordinate
blocking method, i.e., fixing each variable alternatively, re-
weighted ROLSDA in (14) could be solved correspondingly.

Case 1 (fixing G): The Lagrangian function of the prob-
lem (14) could be written as

L (W,Λ) =‖(WTXH− FGT)D
1
2 ‖2F−

Tr(Λ(WTW − I)).
(15)

Thus, the KKT condition can be derived as

∂L (W,Λ)

∂W
= 0

⇒ 2XHDHXTW − 2XHDGFT = 2WΛ

⇒WT(S
(D)
t − S

(D)
b )W = Λ

(16)

where{
S
(D)
t = XHDHXT

S
(D)
b = XHDG(GTDG)−1GTDHXT

. (17)

Eqs. (14) and (16) in whole imply that W is the matrix of
eigenvector corresponding to the first k smallest eigenvalues
of S

(D)
t − S

(D)
b defined in (17).

Case 2 (fixing W): To obtain the indicative matrix G,
re-weighted ROLSDA in (14) could be further derived as

min
G∈ind

‖(WTXH− FGT)D
1
2 ‖2F

= min
gi∈ind

n∑
i=1

Dii‖WTx
(H)
i − Fgi‖22

≥
n∑

i=1

min
gi∈ind

Dii‖WTx
(H)
i − Fgi‖22

(18)

Input: data matrix X ∈ Rd×n and cluster number c.
Output: indicative matrix G ∈ Rn×c.

1 Initialize weight matrix D = I with random initial
guess G ∈ ind and random orthogonal subspace
W ∈ Rd×k, i.e., WTW = I;

2 while not converge do
3 Update F←WTXHDG(GTDG)−1;
4 for i = 1 : n do
5 Update

gi ← argmin
gi∈ind,1c

Tgi=1

‖WTx
(H)
i − Fgi‖22;

6 end
7 for i = 1 : n do
8 Update Dii ← 1

2‖WTx
(H)
i −Fgi‖2

;

9 end
10 Update S

(D)
t ← XHDHXT;

11 Update
S
(D)
b ← XHDG(GTDG)−1GTDHXT;

12 Update
W← argmin

WTW=I

Tr(WT(S
(D)
t − S

(D)
b )W);

13 end
14 return G;
Algorithm 1: Embedded clustering (EC) method under
the proposed ROLSDA problem in (11).

which indicates that indicative vector gi ∈ Rc×1 of i-th data
point could be determined by individually solving

min
gi∈ind

‖WTx
(H)
i − Fgi‖22 s.t. 1c

Tgi = 1 (19)

where 1c = (1, . . . ,1)T ∈ Rc×1. Based on Eq. (14), Case
1 and 2, embedded clustering (EC) method could be summa-
rized in Algorithm 1 to solve the proposed ROLSDA in (11).

4. EXPERIMENT

We utilize 9 benchmark datasets as AT&T, COIL20, COIL100,
FEI, IMM, YALE, AR, GT and USPS in the experimental part
to further compare the clustering accuracy and NMI under dif-
ferent reduced dimensionality. Besides, clustering accuracy
and NMI are defined as following.
• Clustering accuracy. The clustering accuracy in the

experiment can be computed as

Accuracy =
1

n
max(

∑
Rk,Om

M(Rk,Om))

where Rk stands for the k-th cluster in the final result and
Om stands for the true m-th class. M(Rk,Om) stands for
the number of entities, which originally serve as the input data
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Fig. 1. The clustering accuracy comparisons are performed for the PCA[15]+k-means[10] method, the PCA[15]+RMKMC[16]
method, the unsupervised OLSDA[1] method and the proposed EC method with two baselines as the k-means[10] method and
the RMKMC[16] method under 6 benchmark datasets. (a) AT&T. (b) COIL20. (c) COIL100. (d) FEI. (e) IMM. (f) YALE.

of the m-th class and are assigned to the k-th cluster in the
final result.
• Normalized mutual information. The normalized mu-

tual Information (NMI) serves as an index to determine the
quality of the clusters. The NMI index is defined as

NMI =

∑c
k1=1

∑c
k2=1 nCk1

∩Ck2
log(

nnCk1
∩Ck2

nk1
nk2

)√∑c
k1=1 nk1 log (

nk1

n )
√∑c

k2=1 nk2 log (
nk2

n )

where nk1 , (1 ≤ k1 ≤ c) denotes the number of data in clus-
ter Ck1 and nk2 , (1 ≤ k2 ≤ c) denotes the number of data in
cluster Ck2 with nCk1

∩Ck2
being the number of data in the

intersection set Ck1 ∩Ck2 .
In Fig. 1, first six datasets of the selected datasets men-

tioned above are utilized to compare the clustering accuracy
of four approaches as PCA[15] + k-means[10], PCA[15] +
RMKMC[16], unsupervised OLSDA[1] and the proposed EC
under different reduced dimensionality with k-means[10] and
RMKMC[16] being the baselines. In particular, PCA[15] +
k-means[10] and PCA[15] + RMKMC[16] denote that low-
dimensional data WTX is achieved in advance via PCA[15]
for further clustering via the k-means[10] and RMKMC[16]
methods, respectively.

In Tab. 1, average least error rates are recorded for un-
supervised OLSDA and the proposed EC method to compare

with the error rates obtained by the k-means and RMKMC
methods under the rest of the datasets. Besides, the associ-
ated NMI index is also recorded in Tab. 1.

According to the results in Fig. 1 and Tab. 1, we could
conclude that:

1. From Fig. 1, the clustering accuracy of the proposed
EC method is better than those of other approaches including
PCA + k-means, PCA + RMKMC, unsupervised OLSDA and
two baselines under most reduced dimensionality.

2. From Tab. 1, the proposed EC method is consistently
better than k-means, RMKMC and unsupervised OLSDA on
both error rate and NMI index.

5. CONCLUSION

In this paper, a novel embedded clustering method is proposed
via extending the supervised orthogonal least square discrim-
inant analysis method to the robust unsupervised case, which
is closely related to k-means. Besides, re-weighted counter-
part of unsupervised robust orthogonal least square discrimi-
nant analysis problem is utilized for the convenient optimiza-
tion with self-adaptive weight. Consequently, the embedded
clustering method is proposed with robust outliers and op-
timal weighted cluster centroids. The effectiveness and the
superiority of the proposed embedded clustering method are
further verified both empirically and analytically.
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