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ABSTRACT

Dropout, the random dropping out of activations according to a spec-
ified rate, is a very simple but effective method to avoid over-fitting
of deep neural networks to the training data.

In this work, we approach regularization from the view of the
objective function by dynamically changing the objective function to
avoid local minima. The underlying theory is based on our previous
work where we showed that a novel family of training criteria exists
based on the f-divergence. These criteria are a generalization of the
cross-entropy criterion. We introduce two regularization schemes –
the first approach minimizes over a family of training criteria in order
to achieve the lowest possible criterion, and the second approach
randomly chooses a criterion from a family of criteria according to a
Gaussian distribution.

In practical experiments on the WSJ-5K corpus, the proposed
schemes are successfully evaluated compared to dropout for deep
neural networks and bidirectional gated recurrent units, both as stan-
dalone approaches and in combination with dropout.

Index Terms— dropout, generalization error bounds, training
criteria, f-divergence, neural networks

1. INTRODUCTION

It is well known that the training of deep neural networks suffers
from over-fitting to the training data. Several techniques such as
weight regularization (L1 and L2), weight constraints, early stop-
ping and model averaging can make the over-fitting to the training
data less damaging. Dropout, the random dropping out of activation
output, has become the most popular among these techniques [1].

In this work, two new regularization techniques are proposed.
The novel techniques dynamically change the training criterion to
avoid getting stuck in local minima too early. This approach is based
on our previous work in [2, 3, 4] where classification error bounds
and related training criteria based on the f-Divergence are derived.

In [4], the Conjugate Power Approximation criterion (α-CPA)
with parameter α ∈ [0, 1] was derived from classification error
bounds based on the f-Divergence. This class of criteria is a special
case of the cross-entropy (CE) criterion i.e. the power approxima-
tion converges to the logarithm for α → 0. Practical experiments
suggested that a combination of the conjugate power approximation
and the cross-entropy criterion can result in an improved criterion
by tuning over α.

Here, we propose two scheduling approaches for choosing α –

• Minimum Conjugate Power Approximation: Minimize α-
CPA over α for each sample or mini-batch.

• Noisy Objective Function: Randomly draw α according to
a Gaussian distribution with a specific mean (usually close to
zero) and a specific variance for each sample or mini-batch.

In practical experiments, we compare and combine both schemes
with the state-of-the-art dropout regularization technique. We train
and evaluate Deep Neural Networks (DNNs) and Bidirectional
Gated Recurrent Units (BGRUs) as acoustic models using different
regularization techniques on the WSJJ0 speech recognition task.
The proposed schemes are successfully compared to dropout, both
as standalone approaches and in combination with dropout.

Section 2 reviews our previous work from [2, 3, 4]. Sections 3
and 4 introduce the novel minimum conjugate power approximation
and noisy objective function approach. Sections 5 and 6 discuss the
experimental setup and results The paper concludes with Section 7.

2. A FAMILY OF DISCRIMINATIVE TRAINING
CRITERIA BASED ON THE F-DIVERGENCE

In this section our previous work from [2, 3, 4] is briefly reviewed.
Consider a statistical classification problem with a model distribu-
tion q(x, c) of the continuous observations x ∈ X and classes c ∈ C,
which is used to classify samples of the unknown true distribution
pr(x, c). The Bayes cpr(x) and model cq(x) decision rules corre-
sponding to the true and model posterior probabilities pr(c|x) and
q(c|x) are defined as

cpr(x) := argmax
c∈C

{pr(c|x)}

cq(x) := argmax
c∈C

{q(c|x)}.

The quality of the model is measured by the local and global classi-
fication error difference associated with the decision rules

∆(x) := pr(cpr(x)|x)− pr(cq(x)|x)

∆ :=

∫
pr(x)∆(x) dx.

Definition 1 If f : R+ → R is a convex and f(1) = 0 then

Dx
f (pr||q) :=

∑
c∈C

q(c|x)f

(
pr(c|x)

q(c|x)

)
is defined as the f-Divergence [5, 6, 7].

In [2, 3], the f-Divergence was introduced to derive the following
tight implicit classification error bound on the global and local clas-
sification error difference

2Dx
f (pr||q) ≥ f(1 + ∆(x)) + f(1−∆(x)). (1)
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There, this local implicit classification error bound was extended
to explicit global bounds for a specific type of f-Divergence func-
tions. If f : R+ → R is convex, f(1) = 0, and f ′′′(u) exists and
is monotonically increasing in u ∈ [0, 1], then the following expres-
sion establishes a bound on the global classification error difference

∆2 ≤ 1

f ′′(1)

∫
pr(x)Dx

f (pr||q) dx.

For conjugate convex functions f(u) = u · g(1/u), and if g(u)
is monotonically decreasing, this bound can be transformed into an
empirical training criterion Ff (q) using the empirical distribution on
the labeled samples (xn, cn), n = 1, . . . , N

2
1

f ′′(1)

∫
pr(x)Dx

f (pr||q) dx

 Ff (q) =
1

f ′′(1)

1

N

N∑
n=1

g(q(cn|xn)).

The conjugate power approximation (α-CPA) training criterion
associated with the function f(u) = −u

(
1
uα
− 1
)

and f ′′(1) =
1− α fulfills the above conditions and results in

Fα-CPA(q) =
1

N

N∑
n=1

(1− qα(cn|xn))

α(1− α)
. (2)

For α → 0 the power approximation converges to the logarithm
log(u) = uα−1

α
, while the corresponding f-Divergence converges to

the Kullback-Leibler f-Divergence, and the criterion converges to the
cross-entropy criterion.

FCE(q) = − 1

N

N∑
n=1

log q(cn|xn) (3)

As convex functions are closed under addition, this is also valid
for the corresponding f-Divergences and derived training criteria.

In the next section we introduce the minimum conjugate power
approximation training criterion which minimizes over α to derive a
smaller bound, and therefore a better training criterion.

3. MINIMUM CONJUGATE POWER APPROXIMATION

All training criteria are derived from a classification error bound on
the classification error difference. By choosing a tighter bound we
can expect a better training criterion. According to this argument,
Figure 1 shows that for different model posteriors different α-CPA
criteria are minimal. Therefore, by minimizing the corresponding α-
CPA classification error bound over α will result in a tighter bound.
The corresponding training criteria for a sample or batch-wise mini-
mization over α results in

1

N

N∑
n=1

min
α∈[0,β]

{
(1− qα(cn|xn))

α(1− α)

}
(MIN-SAMP-CPA)

min
α∈[0,β]

{
1

N

N∑
n=1

(1− qα(cn|xn))

α(1− α)

}
(MIN-BATCH-CPA)

For practical purposes we have included a parameter β ∈ [0, 1] to
limit the choice of α. The practical implementation uses a golden
section search for the minimal α within the interval [0, β].

The next section introduces the other proposed approach of
noisy objective functions which chooses the parameter α randomly
drawn according to a Gaussian distribution.
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Fig. 1. Function 1−q(cn|xn)
α(1−α) corresponding to one sample of the

α-CPA criterion which converges to the cross-entropy criterion for
α→ 0.

4. NOISY OBJECTIVE FUNCTION

In this section we introduce the noisy conjugate power approxima-
tion criterion. By randomly choosing the parameter α ∼ N (µ, σ2)
according to a Gaussian distribution with specific mean µ and vari-
ance σ2, the resulting training criterion can be expected to be less
sensitive to local minima. Therefore, this method is suitable for reg-
ularization towards a better local optimum. The resulting training
criterion randomly chooses α either per sample or batch-wise

1

N

N∑
n=1

rand
α∼N (µ,σ2)
α∈[0,1]

{
(1− qα(cn|xn))

α(1− α)

}
(RAND-SAMP-CPA)

rand
α∼N (µ,σ2)
α∈[0,1]

{
1

N

N∑
n=1

(1− qα(cn|xn))

α(1− α)

}
(RAND-BATCH-CPA)

5. EXPERIMENTAL SETUP

The Gaussian mixture Hidden Markov Model (GHMM) baseline
recognition system for WSJ0 uses 1500 generalized triphone states
which were top down clustered using a decision tree, plus one si-
lence state. The corpus statistics for WSJ0 are shown in Table 1.
The emission probabilities are modeled by Gaussian mixture distri-

Table 1. Corpus statistics (RW : running words).
Corpus Train/ Dev/ Eval

Data[h] #Segments #Words
WSJ0 15:17/ 0:46/ 0:4 7k/ 410/ 330 130k/ 6k/ 5k

butions with a total of about 200k densities. The raw acoustic fea-
tures are 19-dimensional PLP features. Temporal context is included
by splicing 9 successive frames of PLP features into super-vectors,
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then projecting to 40 dimensions using linear discriminant analysis
(LDA). For recognition purpose a 5k lexicon and trigram language
model for WSJ0 is used.

All neural network experiments use an acoustic front-end that
comprises of 40 Log-Mel features augmented with delta and dou-
ble delta, and are evaluated as hybrid acoustic models for automatic
speech recognition. Deep Neural Networks (DNNs) and Bidirec-
tional Gated Recurrent Units (BGRUs) are trained using the archi-
tectures and recipes described in [8].

6. EXPERIMENTAL RESULTS

In this section the result of a series of experiments which combine
and compare different training criteria are described. In the follow-
ing we use the notation A+B in case a criterion A is combined with
a criterion B, i.e. A+B = (A+B)/2 is effectively used for training.
The training criteria derived here are still derived from error bounds
based on the f-Divergence, as f-Divergences are closed under addi-
tion. In the subsequent experiments the best model is always chosen
according to best the WER on the DEV corpus. As a contrastive re-
sult, the overall best model on the EVAL corpus achieves a WER of
1.9%. This is a BGRU model with dropout 0.1 and is trained using
the CE+RAND-SAMP-CPA criterion. This model however achieves
a WER of 2.6% on the DEV corpus.

Table 2. The WER[%] as a function of different training cri-
teria working as a regularization scheme for DNN, BGRU and
BGRU(0.1) (BGRU with dropout rate 0.1) model on the WSJ0 test
corpora.

MODEL CRITERION WER[%]
DEV EVAL

DNN CE 3.1 3.3
MIN-SAMP-CPA 3.0 3.5
CE+MIN-SAMP-CPA 2.9 3.0
MIN-BATCH-CPA 3.1 3.4
CE+MIN-BATCH-CPA 3.1 3.2
RAND-SAMP-CPA 3.0 3.3
CE+RAND-SAMP-CPA 2.9 3.0
RAND-BATCH-CPA 2.9 3.5
CE+RAND-BATCH-CPA 2.9 3.1

BGRU CE 2.6 2.4
MIN-SAMP-CPA 2.7 2.0
CE+MIN-SAMP-CPA 2.7 2.2
MIN-BATCH-CPA 2.7 2.2
CE+MIN-BATCH-CPA 2.7 2.1
RAND-SAMP-CPA 2.6 2.2
CE+RAND-SAMP-CPA 2.6 2.0
RAND-BATCH-CPA 2.5 2.2
CE+RAND-BATCH-CPA 2.5 2.2

BGRU(0.1) CE 2.6 2.3
MIN-SAMP-CPA 2.6 2.3
CE+MIN-SAMP-CPA 2.7 2.1
MIN-BATCH-CPA 2.6 2.2
CE+MIN-BATCH-CPA 2.7 2.2
RAND-SAMP-CPA 2.6 2.1
CE+RAND-SAMP-CPA 2.6 2.1
RAND-BATCH-CPA 2.5 2.3
CE+RAND-BATCH-CPA 2.5 2.2

In initial experiments, the DNNs are first trained using the CE,
CPA and CE+α-CPA for α ∈ {0.001, 0.01, 0.1, 0.2, 0.3, 0.4}. The

baseline CE criterion using the DNN model results in a WER of
3.1% on the DEV corpus, and 3.3% on the EVAL corpus.
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Fig. 2. The WER[%] as a function of the parameter α of the α-CPA
criterion trained using DNN models.

Figure 2 shows the result for the α-CPA criterion compared to
the CE criterion only. The CE+α-CPA criterion is not shown since
as it had a similar performance.

By choosing the optimal α according to the WER on the DEV
corpus, a small improvement over the CE criterion is achieved
while leading to a WER degradation on the EVAL corpus. For
slightly different α ∈ {0.01, 0.1}, the EVAL performance is better
than the baseline CE criterion. The evaluation of the MIN-CPA
and CE+MIN-CPA criterion minimized on a sample or batch-wise,
without restriction on β (i.e. β = 1), results in a WER ranging from
3.7 to 4.0. This is slightly worse than the CE baseline criterion.
The analysis of these results, and with Figure 1 in mind, where the
CE criterion is lower-bounded by α-CPA for smaller values of α,
suggests a different strategy – a smaller α close to zero can achieve
a better criterion. Therefore, in the next set of experiments, α is con-
strained to smaller values either by choosing a small β, or choosing
a smaller mean and variance.

In the next set of experiments we apply dropout to the interme-
diate layer outputs for DNNs and BGRUs using the dropout rates
{0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5}. For BGRUs we also found it use-
ful to apply the same dropout rate to the weights simultaneously.
Dropout did not help for DNNs. However, for BGRUs the best
dropout rate is 0.1 which reduced the WER on the DEV corpus only
slightly by a couple of error counts, but reduced the WER on the
EVAL corpus from 2.4 to 2.3.

In the next set of experiments we train DNN and BGRU models
with a variety of combined criteria where the choice for α is con-
strained to values close to zero. For β ∈ {10−i|i ∈ {1, 2, 3, 4, 5}}
the DNN and BGRU models are trained using the following criteria

• MIN-SAMP-CPA,

• CE+MIN-SAMP-CPA,

• MIN-BATCH-CPA,
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• and CE+MIN-BATCH-CPA.
Also for µ ∈ {10−i|i ∈ {1, 2, 3, 4, 5, 6}} and σ2 ∈ {10−i|i ∈
{1, 2, 3, 4, 5, 6}} the DNN and BGRU models are trained using the
following criteria
• RAND-SAMP-CPA,
• CE+RAND-SAMP-CPA,
• RAND-BATCH-CPA,
• and CE+RAND-BATCH-CPA.
Figures 3 and 4 show the WER curve of the CE+MIN-SAMP-

CPA criterion and the CE+RAND-SAMP-CPA criterion for BGRU
models with dropout 0.1 respectively.
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Fig. 3. The WER[%] as a function of the constraint β for the
CE+MIN-SAMP-CPA criterion for BGRU models with dropout 0.1
on the WSJ0 test corpora.

Table 2 shows the result of different training criteria combina-
tions for the various models. The best results have been highlighted.
In summary, using the combined CE+MIN-SAMP-CPA, CE+MIN-
BATCH-CPA, CE+RAND-SAMP-CPA, CE+RAND-BATCH-CPA
criteria for both DNN and BGRU models, results in a similar or
lower WER on the DEV corpus, and a 0.2-0.4% WER improvement
on the EVAL corpus. This is a 9-20% relative improvement on the
EVAL corpus. For BGRU models the influence of dropout in com-
bination with the novel criteria has no major impact on the WER.
However, a small negative impact on the WER is observed in cases
where the combination does not include the CE criterion. Overall,
the randomized criteria CE+RAND-SAMP-CPA and CE+RAND-
BATCH-CPA perform more stably than the other criteria.

7. CONCLUSION

Two novel regularization techniques were introduced based on new
training criteria. Following a principled approach, training criteria
are derived from f-Divergence bounds on the classification error dif-
ference between the Bayes and model decision rule. The first tech-
nique minimizes over this family of training criteria. This continu-
ously changes the functional form of the training criterion to avoid
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Fig. 4. The WER[%] as a function of the variance σ2 for the
CE+RAND-SAMP-CPA criterion with µ = 10−6 for BGRU mod-
els with dropout 0.1 on the WSJ0 test corpora.

local minima too early. The second technique dynamically changes
the objective function by randomly drawing from a family of cri-
teria according to a Gaussian distribution which also avoids local
minima. Both techniques successfully showed a WER improvement
over the cross entropy baseline criterion when tested in practical ex-
periments on the WSJ-5K corpus for deep neural networks and bidi-
rectional gated recurrent units, both in standalone implementations
and in combination with dropout.
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