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ABSTRACT

We consider the problem of crowdsourced clustering of a set
of items based on queries of the similarity of triple of ob-
jects. Such an approach, called triangle queries, was proposed
in [1], where it was shown that, for a fixed query budget, it
outperforms clustering based on edge queries (i.e, comparing
pairs of objects). In [1] the clustering algorithm for triangle
and edge queries was identical and each triangle query re-
sponse was treated as 3 separate edge query responses. In
this paper we directly exploit the triangle structure of the re-
sponses by embedding them into a 3-way tensor. Since there
are 5 possible responses to each triangle query, it is a priori
not clear how best to embed them into the tensor. We give
sufficient conditions on non-trivial embedding such that the
resulting tensor has a rank equal to the underlying number
of clusters (akin to what happens with the rank of the adja-
cency matrix). We then use an alternating least squares tensor
decomposition algorithm to cluster a noisy and partially ob-
served tensor and show, through extensive numerical simula-
tions, that it significantly outperforms methods that make use
only of the adjacency matrix.

Index Terms— Crowdsourced Clustering, Tensor De-
composition

1. INTRODUCTION
Crowdsourcing - the process of collecting data from workers
on platforms such as Amazon Mechanical Turk for various
applications has recently become quite popular [2, 3]. The
workers on these platforms are often non-experts and hence
the answers obtained will be noisy. Therefore both problems
of designing queries and designing algorithms for inferring
quality data from such non-expert workers are of importance.

Crowdsourced Clustering: [4, 5, 1]. Consider the task
of collecting labels of unlabelled images, e.g, of birds of dif-
ferent species. To label the image of a bird, a worker should
either have some expertise regarding bird species, or should
be trained, both of which are expensive. However, answering
a comparison question, such as, “Do these two birds belong
to the same species?” is much easier than the labeling task
and does not require expertise or training. Though different
workers might use different criteria for comparison, e.g, color
of feathers, shape, size etc., the hope is that, averaged over
the crowd workers, we will be able to reasonably resolve the
clusters (and label each).

Fig. 1. Example of a triangle query.
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Fig. 2. Configurations for a triangle query that are (a) observed and (b) not
allowed.

In [1] we considered the problem of query design for
crowdsourced clustering and showed that for a fixed query
budget, we can obtain better quality answers (and hence bet-
ter clustering) by making random triangle queries, where
three items are compared per query (Figure 1) as compared
to making random edge queries where a pair of items are
compared. However, in [1], the information obtained from
the triangle queries was embedded into an adjacency matrix
which was input to graph clustering algorithms. Such an
embedding treats each triangle query as 3 separate edges and
ignores the triangle structure itself. A more natural embed-
ding is to consider a tensor where the query result for each
triple of items {i, j, k} is embedded into the ijk-th entry of a
3-way tensor.

Entry Aij of an adjacency matrix of a graph holds infor-
mation about the pair of nodes {i, j}, which has two possible
configurations, edge, encoded by Aij = 1 and no edge, en-
coded by Aij = 0. The true adjacency matrix, A∗, obtained
by this simple encoding has a low-rank structure that reflects
the underlying clusters and the rank is equal to the number
of clusters. A triangle query has 5 possible answers (Fig-
ure 2(a)): (1) All items are similar, denoted by lll, (2) Items
1 & 2 are similar, denoted by llm, (3) Items 1 & 3 are simi-
lar, denoted by lml, (4) Items 2 & 3 are similar, denoted by
mll and (5) None are similar, denoted by lmj. So, we need
an encoding scheme with 5 alphabets to embed the informa-
tion obtained from a triangle query. Moreover, we also would
like the true tensor, T∗, obtained by this embedding to have a
low-rank structure that reflects the underlying clusters.
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Our Contributions: In this paper, we propose a gen-
eral encoding scheme for filling a tensor from triangle queries
(Section 3.1) and provide sufficient conditions on this encod-
ing scheme to give a true tensor with unique (up to scaling and
permutations) CP-decomposition of rank equal to the number
of clusters (Section 3.2, 3.3). We also provide extensive nu-
merical simulations (Section 4) that show that using tensor
decomposition methods can improve over clustering obtained
via the adjacency matrix.

2. TENSORS: A QUICK RECAP
A tensor is a multidimensional array. [6] provides a very good
survery on tensors. In this paper we will focus on 3-way ten-
sors. In this section we provide a few properties that are rele-
vant for our results.

A rank-1 tensor is an outer product of 3 vectors x⊗y⊗ z
with (x ⊗ y ⊗ z)ijk = xiyjzk. A rank-K tensor, T can be
written as a sum of K rank-1 tensors (CP-decomposition):
T =

∑K
l=1 ul⊗vl⊗wl = U⊗V⊗W, where ul,vl,wl ∈

Cn, U = [u1, · · · ,uK ], V = [v1, · · · ,vK ] and W =
[w1, · · · ,wK ]. Recall that the Kruskal rank of a matrix A,
denoted by krank(A), is the maximal number K, such that
any set of K columns of A is linearly independent. The
CP-decomposition of a tensor is unique up to scaling and
permutations of the factors under mild conditions:

Theorem 2.1 (Kruskal) [7, 8] The CP-decomposition of a
n × n × n tensor, T = U ⊗V ⊗W (with U,V,W being
n×K matrices), is unique up to scaling and permutations if
krank(U) + krank(V) + krank(W) ≥ 2K + 2.

3. MAIN RESULTS
Consider a graph on n items with K disjoint clusters. In this
section we present a scheme to encode the answers to the tri-
angle queries in a tensor and provide sufficient conditions that
guarantee a unique (up to scaling and permutations) rank-K
CP-decomposition of the true tensor.
3.1. Encoding Scheme for Embedding Triangle Queries
Recall that a triangle query has 5 possible configurations (Fig-
ure 2(a)). We propose the following encoding scheme to em-
bed the response to the query {i, j, k}:
1. If {i, j, k} are in the same cluster, Tijk = α 6= 0.
2. If i, j are in the same cluster but k is not, Tijk = β1 6= 0.
3. If i, k are in the same cluster but j is not, Tijk = β2 6= 0.
4. If j, k are in the same cluster but i is not, Tijk = β3 6= 0.
5. If {i, j, k} are all in different clusters, Tijk = 0.
And Tiii = α, ∀i. Note that T is not a symmetric tensor in
general. However it does have the following symmetries:
1. If {i, j, k} is of the configuration lll, then Tijk = Tjik =
Tikj = Tjki = Tkij = Tkji = α. Also, Tiij =
Tiji = Tjii = α, and similarly for all the permutations of
{jji, iik, kki, jjk, kkj}.

2. If {i, j, k} is of the configuration llm, then Tijk = Tjik =
β1, Tikj = Tjki = β2, and Tkij = Tkji = β3. Further,
Tiij = Tjii = Tjij = Tjji = Tjij = Tijj = α. Also,
Tiik = Tjjk = β1, Tiki = Tjkj = β2, Tkii = Tkjj = β3.

Similarly for other configurations.

3.2. Low-Rank Tensor Structure
Let ci ∈ Rn denote the indicator vector of cluster i. That
is, cij = 1 if node j ∈ cluster i and 0 otherwise. Let C :=
[c1, · · · , cK ] ∈ Rn×K . Note that each row of C has a single
1, since each item belongs to only one cluster. Let T∗ be the
full tensor filled using the scheme in Section 3.1 via triangle
queries when the there is no noise:

T∗ = α

K∑
l=1

cl ⊗ cl ⊗ cl + β1

K∑
l=1

K∑
m=1
m 6=l

cl ⊗ cl ⊗ cm

+β2

K∑
l=1

K∑
m=1
m6=l

cl ⊗ cm ⊗ cl + β3

K∑
l=1

K∑
m=1
m6=l

cm ⊗ cl ⊗ cl.

(3.1)
The true adjacency matrix A∗ =

∑K
l=1 clc

>
l = CC>, has

a low-rank structure, with rank(A∗) = K, the number of
clusters. Our goal is to understand if the true tensor T∗ (3.1)
has such a low-rank structure. In particular, we want to write
T∗ as: T∗ =

∑K
l=1 ul ⊗ vl ⊗ wl = U ⊗ V ⊗W, where

ul,vl,wl ∈ Cn, U = [u1, · · · ,uK ], V = [v1, · · · ,vK ] and
W = [w1, · · · ,wK ].

The following theorem provides the conditions on the en-
coding scheme (Section 3.1) that is sufficient for T∗ to have
a unique rank-K CP-decomposition.

Theorem 3.1 For the encoding scheme in Section 3.1, T∗ is
a rank K tensor for K ≥ 2 with unique (up to scaling and
permutations) CP-decomposition if the following hold:
1. β1β2 + β2β3 + β3β1 6= 0.
2. α = β1 + β2 + β3 −K β1β2β3

β1β2+β2β3+β3β1
.

3. β1 6= −β2, β2 6= −β3, β3 6= −β1.

3.3. Proof of Theorem 3.1
We observe that T∗ (3.1) can be re-written as: T∗ =∑K
l,m,n=1 Blmncl ⊗ cm ⊗ cn, where B is a K × K × K

tensor (Tucker Decomposition [6]). Suppose we can write B
as a sum of K rank-1 tensors:

B =

K∑
l=1

fl ⊗ gl ⊗ hl = F⊗G⊗H, (3.2)

where fl,gl,hl ∈ CK , F := [f1, · · · , fK ], G := [g1, · · · ,gK ],
and H := [h1, · · · ,hK ]. Then, T∗ has the following rank-K
CP decomposition: T∗ = (CF)⊗ (CG)⊗ (CH) . So, prov-
ing the following lemma is sufficient to prove Theorem 3.1.

Lemma 3.2 For the encoding scheme in Section 3.1, B is a
rank K tensor for K ≥ 2 with unique (up to scaling and
permutations) CP-decomposition if the conditions in Theo-
rem 3.1 are satisfied.

Proof We prove Lemma 3.2 by first constructing F,G,H ∈
CK×K that satisfy (3.2) and then showing that it is unique.

Construction: Comparing with (3.1), we note that the
l−th panel of B, where the third index is kept fixed to l (which
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gives a matrix), has the following structure:

B(:,:,l) =



β1 0 · · · β3 0 · · · 0

...
. . .

...
...

...
...

...
0 · · · β1 β3 0 · · · 0
β2 · · · β2 α β2 · · · β2

0 · · · 0 β3 β1 · · · 0

0
...

...
...

...
. . . 0

0 0 · · · β3 0 · · · β1


= β1I +

[
1 el

] [ 0 β3
β2 Kδ

] [
1>

e>l

]
, (3.3)

where δ := α−β1−β2−β3

K , 1 is a vector of all 1’s and el is the
standard vector with el(l) = 1 and all other entries 0. We
note that B is a circulant tensor in the following sense:

B(:,:,l+1) = ZB(:,:,l)Z
>, where Z :=

0 0 · · · 1
1 0 · · · 0

...
. . .

. . .
...

0 · · · 1 0

 .
This is analogous to a circulant matrix in which the columns
get circularly shifted. Note that from (3.2), we can write,
B(:,:,l) = FDhl

G>, where Dhl
= diag(hl1, · · · , hlK).

The circulant structure of B suggests a circulant struc-
ture for the factors. Since circulant matrices are diagonal-
ized by Fourier transforms, we may write: F := FΛF †

and G> := FΞF †, where F is K × K Fourier ma-
trix normalized with 1/

√
K, Λ and Ξ are diagonal matri-

ces. So, F †B(:,:,l)F = ΛF †Dhl
FΞ = ΛA(l)Ξ, where

A(l) := F †Dhl
F is a circulant matrix. Using (3.3), we can

verify that F †B(:,:,l)F has the following structure:


β1 + β3 + β2 + δ (β3 + δ)η(l−1) · · · (β3 + δ)η(K−1)(l−1)

(β2 + δ)η−(l−1) β1 + δ · · · δη(K−2)(l−1)

(β2 + δ)η−2(l−1) δη−(l−1) · · · δη(K−3)(l−1)

...
...

. . .
...

(β2 + δ)η−(K−1)(l−1) δη−(K−1)(l−1) · · · β1 + δ

 ,

where η = ej2π/K , the K−th root of unity. Note that the
submatrix obtained by removing first row and first column of
the above matrix is toeplitz. So, the corresponding submatrix
of ΛA(l)Ξ, where A(l) is circulant, should also be toeplitz .
This gives us conditions (we omit the details for reasons of
space) using which we can show that Λ = diag(λ, 1, · · · , 1)
and Ξ = diag(µ, 1, · · · , 1). By comparing the entries of
F †B(:,:,l)F to those of ΛA(l)Ξ, the following should hold:

β1 + β2 + β3 + δ = λµ(β1 + δ), β2 + δ = µδ, β3 + δ = λδ

Note that, if δ = 0, then β2 = β3 = 0 which is not allowed
in the scheme considered. So, assuming δ 6= 0, we get:

λ =
β3 + δ

δ
, µ =

β2 + δ

δ
, β1 + β3 + β2 + δ = λµ(β1 + δ).

Using the expressions for λ and µ, we can solve for δ and
hence α in terms of βi, i = 1, 2, 3 and K:

δ =
−β1β3β2

β1β3 + β3β2 + β1β2
, β1β2 + β2β3 + β3β1 6= 0

α = β1 + β3 + β2 −K
β1β3β2

β1β3 + β3β2 + β1β2
(3.4)

Recall that A(l) = F †Dhl
F . So, the diagonal of FA(l)F †

gives the l−th row of H. More elaborate calculations, omitted
here for the reasons of space, show that hl = β11 + Kδel.
Thus, H is a circulant matrix (as expected) with eigenvalues:
Kδ[(β1 + δ)/δ, 1, · · · , 1] (Fourier transform of the first row).
Uniqueness: If F,G,H are full rank, then their kruskal rank
is K, and hence from Theorem 2.1, the CP-decomposition of
B (3.2) is unique. If β3 + δ 6= 0 (i.e, λ 6= 0) and β2 + δ 6= 0
(i.e, µ 6= 0), then F and G are full rank. Further, if β1+δ 6= 0,
and δ 6= 0, then H is also full rank. Using the expression
for δ in (3.4), these sufficient conditions translate to β1 6=
−β2, β1 6= −β3, β2 6= −β3.

3.4. Discussion
1. The encoding scheme is a function of {β1, β2, β3,K} as

they fix the value of α.
2. T∗ with the encoding considered is not orthogonal in gen-

eral, i.e, the factors F,G,H of B and hence U,V,W of
T∗ might not be orthogonal.

3. T∗ with the encoding considered is not symmetric in gen-
eral, unless β1 = β2 = β3.

4. It is interesting to note that we can recover the adjacency
matrix A from T, even when we encode all single edge
results to the same, i.e, β1 = β2 = β3 = β =⇒ α =
(3−K/3)β, as long as α 6= β (when K = 6).

5. In general, let βi = βe−jφi and γ := ejφ1 + ejφ2 + ejφ3 .
Then from (3.4), α = β(|γ|2 −K)/γ̄.

4. NUMERICAL EXPERIMENTS
In this section we numerically compare the performance of
clustering on the adjacency matrix A to that obtained using
the tensor T, both filled by the same set of triangle queries.
Let r determine the sparsity (to fix a budget on the number
of triangle queries). We generate answers to d r3

(
n
2

)
e random

triangle queries using two different models (described in Sec-
tion 4.2). T is filled using the encoding scheme and the sym-
metries described in Section 3.1 for three different encodings:
β = [1, 1, 1], β = [1, 2, 3] and β = [1, −1+i√

2
, −1−i√

2
]. Note

that both A and T have a lot of missing entries as only a small
subset of triples are observed. We use spectral clustering [9]
on A (unobserved entries set to 0).
4.1. Clustering via Tensor Decomposition
Let Ω be the set of triangle queries and Ω be an n × n ×
n tensor with Ωijk = 1 if Tijk is observed. We consider
following simple CP-decomposition objective :

min
U,V,W

n∑
i,j,k=1

{Ωijk(Tijk −
K∑
l=1

uilvjlwkl)}2, (4.1)

which is a non-convex optimization problem. Note that
we fix the number of clusters. We solve (4.1) iteratively
using alternating least squares (ALS). In each time step t,
ALS updates Ut,Vt,Wt, one variable at a time assuming
the other two to be fixed. So, assuming U = Ut−1,V =
Vt−1 to be fixed, we can re-write the objective (4.1) as:
minW

∑n
i,j,k=1{Ωij,k(Tij,k −

∑K
l=1Mij,lwkl)}2, where
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Fig. 3. Comparison of VI (averaged over 10 experiments) for clustering using the tensor (filled using different encoding schemes) compared
to that obtained using adjacency matrix, for varying different parameters for the Conditional Block Model (Section 4.3).
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Fig. 4. Comparison of VI (averaged over 10 experiments) for clustering using the tensor (filled using different encoding schemes) compared
to that obtained using adjacency matrix, for varying different parameters for the Triangle Block Model (Section 4.3)

Mij,l := ut−1il vt−1jl . Note that M = Ut−1�Vt−1 ∈ Cn2×K ,
where � denotes Khatri-Rao product. Let Ω(w),T(w) ∈
Cn2×n be matricized Ω and T respectively, whose rows
are indexed by ij and columns by k of the tensors. Define,
D

(w)
k := diag(Ω(w)(:, k)), where (:, k) stands for k-th col-

umn. Each row of W, equivalently, each column of W>

can be solved for by the following least squares problem:
||D(w)

k T(w)(:, k) −D
(w)
k M(W(k, :))>||2. We use the clus-

tering C0 output by the spectral clustering on A to initialize:
[U0,V0,W0] = [C0F,C0G,C0H]. We implemented the
ALS algorithm on MATLAB using the sparse tensor func-
tions from tensor toolbox [10, 11]. We then run k-means on
[Û, V̂,Ŵ] obtained by ALS to get clusters from T.

4.2. Models for Triangle Queries
We consider two models for generating answers to the tri-
angle queries [1]: Triangle Block Model (TBM) and Condi-
tional Block Model (CBM), both of which are derived from
the popular Stochastic Block Model (SBM) [12].
SBM is a random graph model for a graph with disjoint clus-
ters. Given the cluster assignements to the nodes, the edges
of the graph are independently generated. Edge probability
inside the clusters is p and between the clusters is q. In the
context of crowdsourcing, if a worker compares items i and
j that belong to same cluster, then she will correctly say they
are similar with probability p. If they are not in the same
cluster, then the probability that she will make an error and
say they are similar is q.

For both the TBM and the CBM, given a triple {i, j, k},
the 3 edges {ij, jk, ki} are generated using the SBM. If the
configuration thus obtained is one of the 3 configurations that
is not allowed (Figure 2(b)), then: (1) TBM assumes that the
crowd worker can resolve this to the correct configuration;
(2) CBM will regenerate the 3 edges until one of the allowed
configuration is obtained. More detailed descriptions of these
models are available in [1].

4.3. Simulation Results
Consider a graph on n = 450 nodes with K = 3 clusters of
equal size. We vary the following parameters:
(a)Varying p: Let q = 0.25, r = 0.1. We vary the edge den-
sity inside the clusters p from 0.55 to 1 in steps of 0.05.
(b) Varying q: Let p = 0.7, r = 0.1. We vary the edge den-
sity between the clusters q from 0.1 to 0.25 in steps of 0.05.
(c) Varying r: Let q = 0.25, p = 0.7. We vary the sparsity
parameter r from 0.1 to 0.25 in steps of 0.05.
(d) Varying K: Consider a graph on n = 480 nodes with
clusters of equal sizes and K = [2, 3, 4, 5, 6] and hence the
cluster sizes get varied. Let q = 0.25, p = 0.7, r = 0.2.
Figures 3 and 4 show the results for the CBM and TBM re-
spectively. We compare the output clustering with the ground
truth via variation of information (VI) [13] which is defined
for two clusterings (partitions) of a dataset and has informa-
tion theoretical justification. Smaller values of VI indicate
a closer match and VI = 0 means that the clusterings are
identical. We compare clustering on A (dashed blue line)
to that obtained by clustering T when β = [1, 1, 1] (dot-
ted pink line), β = [1, 2, 3] (solid green line) and complex
β = [1, −1+i√

2
, −1−i√

2
] (solid black line). Note that β = [1, 1, 1]

performs worse as K increases (Figures 3(d), 4(d); note that
when K = 6, α = β). We also note that clustering on T
encoded with different β outperforms that obtained by A. In
particular, the complex βs uniformly outperform others.

5. CONCLUSION AND FUTURE WORK
In this paper we considered the problem of crowdsourced cus-
tering via triangle queries. We proposed an encoding scheme
to embed the answers to triples in a tensor and provided suffi-
cient conditions for it to give a true tensor of rank equal to the
number of clusters. We also showed, through extensive sim-
ulations, that using tensor decomposition for clustering sig-
nificantly improves the clustering obtained via the adjacency
matrix. Future work will focus on improved clustering algo-
rithms that exploit the sparse structure of the noise.
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