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ABSTRACT

Many systems from human brain to the networks on social media,
can be modeled as graphs. The network structure helps us under-
stand, predict and optimize the behavior of dynamical systems. One
of the important tools in understanding network topology is commu-
nity detection. Even though community detection methods are well
developed for static networks, the extensions to the dynamic case are
more limited. In this paper, we introduce two tensor based frame-
works, windowed and running time, for identifying and tracking the
network community structure across time. The frameworks take the
history of the networks into account. The proposed approach relies
on determining the subspace across time using the Tucker decompo-
sition of a tensor constructed from networks across time. We also
propose a computationally efficient way to update the subspace es-
timates across time to track changes in community structure. The
proposed approach is evaluated on both simulated and real dynamic
networks.

Index Terms— Tensor decomposition, Dynamic networks,
Spectral Clustering

1. INTRODUCTION

Networks are commonly used to model the relationships and inter-
actions between people or objects such as in social, biological, and
communication networks. A lot of research has been done in detect-
ing the community structure of networks, especially for static net-
works [1]. In many applications, the community structure changes
over time. The topology of dynamic networks change over time,
since nodes and edges might come and go. Standard spectral clus-
tering can be used to analyze these networks at each time point sep-
arately, but this approach is very sensitive to instantaneous noise.

Early work in dynamic network clustering extended the existing
static clustering algorithms with an added constraint to take the his-
torical data into account for temporal smoothness. An extension of
the k-means and agglomerative hierarchical clustering approaches
was developed in [2] for dynamic networks. A cost function that
considers both the cluster membership at the current time and the
deviation from the previous time point was introduced. In [3] two
frameworks were introduced: preserving cluster quality (PCQ) and
preserving cluster membership (PCM). In both frameworks the clus-
tering depends on a cost function to guarantee temporal smoothness.
This cost function requires a priori knowledge about the number of
clusters and depends on the choice of a changing parameter. In [4],
an evolutionary clustering approach based on a statistical model of
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the adjacency matrix with an adaptive forgetting factor for evolution-
ary clustering and tracking (AFFECT) was introduced. In AFFECT,
static clustering methods were used after smoothing the proximity
between objects over time. This was accomplished by adaptively
estimating a forgetting factor to estimate new proximity. This esti-
mation increases the computation cost compared to static clustering
algorithms. Authors in [5] introduced a constrained tensor factor-
ization approach using PARAFAC to identify the community struc-
ture in static networks. This was achieved by constructing a 3-way
tensor with its slices defined as the subgraphs or egonet that repre-
sent each node and its single hop neighbors in the network. In [6],
a non-negative tensor factorization approach was introduced using
PARAFAC to detect the community structure in temporal networks.
A single 3-way tensor was constructed to represent all the succes-
sive adjacency matrices in the temporal network. The approach was
verified by recreating the class structure of a temporal interaction
network of a school.

In this paper, we introduce a model-free framework that can take
the past history into account with non-arbitrary optimized weighting
coefficients. The proposed framework relies on tensor representa-
tion of networks across time and borrows ideas from tensor based
clustering of multi-layer networks [7]. However, unlike the work in
[7], we consider streaming tensors whose dimension changes with
time. Moreover, the proposed framework both tracks and identifies
the network community structure across time and does not make any
assumptions about the number of clusters and the change points like
PCM and PCQ. In the proposed work, we develop two algorithms:
the windowed and running time tensor analysis. A tensor is con-
structed at each time point by taking the history of networks into ac-
count using a sliding window unlike the work in [6] that constructs
a single tensor for all time points. Our approach identifies the com-
mon subspace across time using Tucker decomposition. Moreover,
we introduced a cost function to track the changes in the community
structure over time.

2. BACKGROUND ON TENSOR DECOMPOSITION

A tensor is a multidimensional array that is commonly used to rep-
resent data with multiple variables or modes. An N-mode tensor is
denoted by X ∈ RI1×I2×···×IN . Matrix factorization methods such as
SVD have been extended to tensors through PARAFAC and Tucker
decompositions [8]. Tucker decomposition provides orthogonal sub-
space information along each mode of the tensor,

X= C×1 U(1)×2 U(2) · · ·×N U(N), (1)

where C ∈ RI1×I2×···×IN is the core tensor and U(n) is the orthogo-
nal component matrix along the nth mode. Tucker decomposition
is commonly implemented through high-order SVD (HOSVD) [9]
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or high-order orthogonal iteration (HOOI) [10]. HOSVD performs
matrix SVD on every unfolding matrix of the tensor independently.
On the other hand, HOOI performs alternating optimization to find
the best projection matrices.

3. TENSOR BASED TEMPORAL CLUSTERING

For static graphs, spectral clustering is commonly used to detect the
community structure in the graph, since it represents the relationship
between the nodes in the graph in a lower dimensional subspace.
Spectral clustering solves the following trace optimization problem
[11, 12],

min
U∈Rm×k

tr
(

UT LNU
)
, s.t UTU = I, (2)

where, LN = I − AN is the normalized Laplacian matrix, AN =

D
−1
2 AND

−1
2 is the normalized adjacency matrix, and D is the degree

matrix which is defined as Dii = ∑
j

ai j . Spectral clustering problem

can also be written as,

max
U∈Rm×k

tr
(

UT ANU
)
, s.t UTU = I, (3)

or
max

U∈Rm×k
‖UT ANU ‖2

F , s.t UTU = I. (4)

The solution to the optimization problems in (2), (3) and (4) is found
by choosing U as the matrix that contains the k eigenvectors that
correspond to the smallest eigenvalues of LN or the largest eigenval-
ues of AN . The community structure is then determined by applying
k-means to matrix U [11].

Assume that dynamic networks are represented by a sequence
of weighted and undirected graphs {G(t)}t1,··· ,tM , where G(t) is an
m×m graph representing the network at time step t, m is the total
number of nodes and M is the total number of time points. Each
graph is defined through the adjacency matrix A(t) ∈ Rm×m where
ai j = 0 if the nodes i and j are not connected, otherwise ai j = a ji
[11].

In the dynamic clustering case, we would like to find the com-
munity structure at time t based on the past history. One way to
accomplish this is to employ a weighted average of the adjacency
matrices within a time window of length L and then optimize the
conventional spectral clustering cost function over this new weighted
average. This results in an optimization over both the subspace vec-
tors matrix, U , and the weight vector, W . The optimization problem
in (4) can then be written as,

max
U,W
‖UT

(
L

∑
l=1

wlA
(l)
N

)
U ‖2

F s.t UTU = I, W ≥ 0,‖W ‖F= 1,

(5)
where wl are the weights for the adjacency matrices within a time
window of length L. In the proposed approaches, we build a third
order tensor, X(i, j,k). where the kth frontal slice of the tensor X
is the adjacency matrix A(k)

N . The dimension of the third mode of
this tensor may either be fixed as in the case of the windowed tensor
approach or grow with time as in the running time tensor approach.
In the windowed tensor approach, we build a sliding fixed size tensor
over all time points. The running time tensor approach, on the other
hand, uses a tensor size that changes over time. In both approaches,
(5) can be reformulated in terms of the Tucker decomposition as
follows,

max
U,W
‖ X×1 UT ×2 UT ×3 W T ‖2

F , UTU = I,‖W ‖F= 1, (6)

where U is the basis along the first and second modes and W corre-
sponds to the weighting vector across time. Since the networks are
undirected, the components along the first two modes are the same.
The problem in (6) can be solved by higher-order orthogonal iter-
ation (HOOI), where in each iteration either the matrix U or the
vector W is fixed to optimize the other one.

3.1. Tracking the Community structure over time

For both algorithms, we define the cost function through ‖ X×1
UT ×2 UT ×3 W T ‖F . This cost function satisfies the following in-
equality,

Cost =‖ X×1 UT ×2 UT ×3 W T ‖F≤‖ X ‖F‖U ‖2
2‖W ‖2, (7)

which can be further simplified to,

Cost =‖ X×1 UT ×2 UT ×3 W T ‖F≤‖ X ‖F , (8)

by noting that ‖W ‖2= 1 and ‖U ‖2
2= λmax(U∗U), where λmax is the

largest eigenvalue of U∗U , which equals to 1 since U∗U = I. There-
fore, by dividing both sides in (8) by ‖ X ‖F we get a normalized
cost function which is always between 0 and 1,

Normalized Cost =
‖ X×1 UT ×2 UT ×3 W T ‖2

F
‖ X ‖2

F
. (9)

Changes in the normalized cost function in (9) reflect changes in the
community structure. Once the change points are determined, the
new number of clusters at that time point will be determined using
the eigengap criterion [11].

3.2. Windowed Tensor Approach

In this approach, we use a sliding window of fixed size α to build the
tensor at time point t as X(t) ∈ Rm×m×α =

[
A(t−α+1)

N · · ·A(t)
N

]
. The

constructed tensors have the same size for all time points. At each
time point, the constructed tensor adds a new adjacency matrix and
excludes the first adjacency of the previous tensor. The algorithm is
summarized in the pseudo code in Algorithm 1. In this approach, we
do not need to initialize the eigenvectors matrix using HOSVD, ex-
cept for the first tensor. For the rest of the time points, the estimated
optimal eigenvectors matrix at time point (t − 1), U t−1 is used to
initialize for time point t.

3.3. Running Time Tensor Approach

In this approach, the tensor at time point t is built by taking all history
into account, where X(t) =

[
A(1)

N · · ·A
(t)
N

]
. This approach estimates

the optimal eigenspace that represents the network at time t in a sim-
ilar fashion to WTA. The main differences are in the tensor size and
initialization of the matrix U . This approach uses a window size that
grows with time. Consequently, the tensor constructed at each time
point has a different size. Moreover, at each time point the eigenvec-
tors matrix is an updated version of the previous one. This update
was motivated by the fact that the tensor at time t is the same as the
tensor at time (t− 1) except for one time slice. Therefore, the ma-
trix U is adaptively updated based on the new adjacency matrix. We
used TrackU algorithm [13, 14] to update the eigenvectors matrix.
The RTTA is described in Algorithm 2, and the eigenvectors matrix
update is described in Algorithm 3.
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Algorithm 1 Windowed Tensor Approach (WTA)

Input: A(1)
N · · ·A

(M)
N ,α

Output: Clustering Labels, Change points
1: for t = α : M do
2: Construct a similarity tensor X(t) =

[
A(t−α+1)

N · · ·A(t)
N

]
3: Matricize the tensor along mode 3 to get X (t)

(3)

4: if t = α then
5: initialize U0 by HOSVD of X

(t)
1

6: else
7: initialize U0 by U t−1

8: end if
9: i = 1

10: while ‖U (t)
i+1−U (t)

i ‖2
F> ε do

11: calculate Wi+1 as the dominant left singular vector of
X (t)
(3)

(
U (t)

i ⊗U (t)
i

)
12: compute Ā =

t
∑

l=t−α+1
(Wi+1)l A

(l)
N

13: obtain Ui+1 by eigenvalue decomposition of Ā

14: i = i+1
15: end while
16: track the change points using (9)
17: use eigen gap criterion to determine the number of clusters
18: normalize the columns of U (t)

19: apply k−means on U (t) to obtain clustering labels
20: end for

Algorithm 2 Running Time Tensor Approach (RTTA)

Input: A(1)
N · · ·A

(M)
N ,starttime, f orgetting f actor = β

Output: Clustering Labels, Change points
1: for t = starttime : M do
2: Construct a similarity tensor X(t) =

[
A(1)

N · · ·A
(t)
N

]
3: Matricize the tensor along mode 3 to get X (t)

(3)

4: if t = starttime then
5: initialize U0 by HOSVD of X

(t)
1

6: else
7: initialize U0=TrackU(U (t−1),S(t−1),A(t)

N ,β )

8: end if
9: i = 1

10: while ‖U (t)
i+1−U (t)

i ‖2
F> ε do

11: calculate Wi+1 as the dominant left singular vector of
X (t)
(3)

(
U (t)

i ⊗U (t)
i

)
12: compute Ā =

t
∑

l=1
(Wi+1)l A

(l)
N

13: obtain Ui+1 and Si+1 by eigenvalue decomposition of Ā =

U (t)
i+1S(t)i+1

(
U (t)

i+1

)T

14: i = i+1
15: end while
16: track the change points using the normalized cost function

given in (9)
17: use eigen gap criterion to determine the number of clusters
18: normalize the columns of U (t)

19: apply k−means on U (t) to obtain clustering labels
20: end for

4. RESULTS

4.1. Simulated Temporal Networks

A dynamic network is generated for 60 time points with 64 nodes.
Intra and inter-cluster edges were selected from a truncated Gaussian
distribution in the range of [0,1]. The simulated networks were cre-
ated with the first 20 networks having 4 clusters and edges selected
from a truncated Gaussian distribution, with µintra = 0.3, σintra =
0.3 and µinter = 0.2, σinter = 0.2. The number of clusters decreases
to 2 for the next 20 networks, with the edges taken from a truncated
Gaussian distribution, with µintra = 0.2, σintra = 0.3 and µinter = 0.2,
σinter = 0.2. From time point 41 until point 60, the number of clus-
ters increases to 4, with edges drawn from truncated Gaussian distri-
bution with µintra = 0.3, σintra = 0.3 and µinter = 0.2, σinter = 0.2.
For the windowed tensor approach, a 3-mode tensor was constructed
at each time point, with a window size of 6. We ran this exper-
iment 100 times. The number of clusters at each time point was
detected using the eigengap criterion. The performance of the pro-
posed approach (WTA), standard spectral clustering (SC), (PCQ),
(PCM) and (AFFECT) is compared using Rand index [15]. The al-
gorithm was able to detect the correct community structure over time
and the change points using the normalized cost function in (9). The
results in Fig.1 indicate that the proposed algorithm outperforms the
other algorithms in terms of Rand index and detecting the correct
community structure.

10 15 20 25 30 35 40 45 50 55 60
50

60

70

80

90

100

Time Step
(a)

R
an

d 
In

de
x

Rand Index Comparison

 

 

WTA AFFECT SC PCM PCQ

10 15 20 25 30 35 40 45 50 55 60

0.25

0.3

0.35
Normalized Cost Function

Time Step
(b)

N
or

m
al

iz
ed

 C
os

t

Fig. 1: (a) Rand index comparison between WTA, AFFECT, SC,
PCM and PCQ for the synthetic data set, the number of clusters
changes from 4 to 2 at the time point 21, and from 2 to 4 at time
point 41. (b) The normalized cost function.

4.2. Reality Data Mining

This data set represents the cell phone activity for 94 students
and staff in MIT Media Laboratory. It was collected between
August/2004 and June/2005 [16]. The data set is represented by
a dynamic network across 46 time points. Each point refers to a
week during the school year. Each time point was represented by a
3-mode tensor. Both algorithms were applied to this data to track
the changes over time.We assumed that there were two dominant
clusters at each time point, and we used the normalized cost func-
tion in (9) to track the changes in the community structure over time.
The detected change points corresponds to end of the Fall semester,
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start of the Spring semester, spring break and the end of the Spring
semester. The change points shown in Fig.2 were detected by the
WTA with α = 11.

Algorithm 3 TrackU

Input: Eigenvector matrix: U, Eigenvalues matrix: S, adjacency ma-
trix at time point t: AN , forgetting factor: β

Output: updated eigenvector matrix
1: CA =size(AN ,2), CU =size(U,2), s=diag(S)
2: for i = 1 : CA do
3: b̄ = AN(:, i)
4: for j = 1 : CU do
5: y j = uT

j b̄ j

6: s(t)j = β s j + y2
j

7: compute the error: e j = b̄ j− y ju j

8: u j = u j +
1
s j

y je j

9: b̄ j+1 = b̄ j− y ju j

10: end for
11: end for
12: orthogonalize U using Gram-Schmidt
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Fig. 2: Detected Change Points for Reality Mining Data.

4.3. Dynamic Functional Connectivity Networks (dFCNs)

The proposed tensor tracking approach is applied to a set of connec-
tivity graphs constructed from EEG data containing the error-related
negativity (ERN). The ERN is a brain potential response that oc-
curs following performance errors in a speeded reaction time task
usually 25-75 ms after the response. Previous work [17] indicates
that there is increased coordination between the lateral prefrontal
cortex (lPFC) and medial prefrontal cortex (mPFC) within the theta
frequency band (4-8 Hz) and ERN time window. EEG data from
63-channels was collected in accordance with the 10/20 system on
a Neuroscan Synamps2 system (Neuroscan, Inc.) sampled at 128
Hz from 91 subjects. The task was a common speeded response let-
ter (H/S) flanker, where error response locked trials from each sub-
ject were utilized. The EEG data are pre-processed by the spherical
spline current source density (CSD) waveforms to sharpen event-
related potential (ERP) scalp topographies and reduce volume con-
duction [18].

We constructed average connectivity networks at each time point
across subjects to represent the adjacency matrix of the connectivity
graphs. Individual connectivity networks were constructed by us-
ing a previously introduced phase synchrony measure [19]. This
results in a dynamic network with 63 nodes and 256 time points.
We applied the proposed RTTA to detect the community structure
over time. Starting from time point 30, a 3-mode tensor was built at
each time point.The change points were detected by the normalized
cost function in (9) as shown in Fig.3. As it can be seen in Fig.3,

there is an increase in the cost function around −78 ms right before
the response time. Similarly, there is a decrease in the cost function
around 400 ms corresponding well with the end of the ERN wave-
form. The number of clusters was determined by eigengap criterion
and the detected community structure corresponding to these three
time periods are given in Fig.4. While the community structures for
pre- and post- ERN intervals are similar, there is increased segrega-
tion during ERN especially in the frontal central brain regions. This
is aligned with the increased coordination between lPFC and mPFC
during this time.
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Fig. 3: Detected Change Points for ERN Data.

Fig. 4: Community structure for the ERN networks obtained by
RTTA: (a) Pre-ERN, (b) ERN, (c) Post-ERN.

5. CONCLUSIONS

In this paper, we introduced two frameworks to detect and track com-
munity structure in dynamic networks: windowed and running time
tensor analysis. A tensor is constructed at each time point by taking
the past history into account. Both frameworks detect the commu-
nity structure by finding a common subspace through Tucker decom-
position of the constructed tensors. In addition, we introduced a cost
function to track changes in the dynamic network. The algorithms
were tested on multiple simulated and real data sets and compared to
the existing state of the art algorithms. The simulation results show
that the proposed algorithms are able to detect the correct commu-
nity structure and changes in the number of clusters over time even
in noisy networks. The application to functional connectivity brain
network revealed changes in the community structure across time
that aligned well with the experimental setting and prior work on
cognitive control. Future work will consider the extension of this
framework to higher order tensor type data clustering across differ-
ent modes.
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