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ABSTRACT
We present a variant of the regularized dual averaging (RDA)

algorithm for stochastic sparse optimization. Our approach differs
from the previous studies of RDA in two respects. First, a sparsity-
promoting metric is employed, originated from the proportionate-
type adaptive filtering algorithms. Second, the squared-distance
function to a closed convex set is employed as a part of the objective
functions. In the particular application of online regression, the
squared-distance function is reduced to a normalized version of the
typical squared-error (least square) function. The two differences
yield a better sparsity-seeking capability, leading to improved con-
vergence properties. Numerical examples show the advantages of
the proposed algorithm over the existing methods including ADA-
GRAD and adaptive proximal forward-backward splitting (APFBS).

Index Terms— online learning, sparse optimization, stochastic
optimization, orthogonal projection, proximity operator

1. INTRODUCTION

Stochastic optimization (stochastic approximation [1] more in gen-
eral) has drawn growing attention over the past years due particularly
to the recent data deluge [2]. We focus on the case where the solu-
tion is “sparse”; i.e., many components are zero. This often happens
in a wide range of applications such as echo cancellation, channel
estimation, text classification, etc. Sparseness has been exploited
in adaptive filtering [3–5] which is closely related to stochastic opti-
mization. The algorithms in [3–5] can be regarded as variable-metric
methods [6, 7]. More recently, sparsity-aware algorithms have been
studied for stochastic optimization and online learning, including
the adaptive proximal forward-backward splitting (APFBS) method
[8, 9], the FOBOS method [10], and the regularized dual averaging
(RDA) method [11]. In particular, the idea of RDA comes originally
from the primal-dual subgradient methods [12] of Nesterov, and it
is known to yield a sparser solution than the FOBOS method [11].
An approach similar to RDA is known as the follow-the-regularized-
leader in online convex optimization [13]. The objective of this pa-
per is to improve the performance of RDA by leveraging the insights
of sparsity-aware adaptive filtering. The key ingredients of the pro-
posed algorithm are (i) normalization of the input vector and (ii)
variable metric.

In adaptive filtering, it is well known that the normalized least
mean square (NLMS) algorithm [14, 15] often performs better and
is more stable than the popular stochastic gradient descent (SGD)
method referred to as the least mean square (LMS) algorithm [16].
The NLMS algorithm is usually derived based the so-called mini-
mum disturbance principle [17], and is widely recognized as an iter-
ative projection method onto a zero-instantaneous-error hyperplane.
In the present study, we highlight the fact that NLMS can be re-
garded as a stochastic gradient method for a “normalized” squared
error cost, which is equivalent to the squared distance function to
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the zero-instantaneous-error hyperplane. The squared distance func-
tions have actually been considered in the studies of the adaptive
projected subgradient method (APSM) [18–20] and APFBS.

In this paper, we present a sparse stochastic optimization algo-
rithm called projection-based dual avearaging (PDA). We consider a
squared-distance function to a random closed convex set, where the
randomness comes from the measurements. To be more specific, we
consider a specific stochastic optimization problem of minimizing
the expectation of the squared distance function penalized by some
convex regularizer. Here, the distance is defined with the variable
metric, which is denoted by Qt, that aims to promote sparsity of our
estimates. The PDA update involves regularization by the squared
Qt-norm of the coefficient vector. PDA differs from the previous
studies of RDA in this respect in addition to the difference in the
cost functions. (See Section 3.2 for the differences from ADAGRAD-
RDA.) As a result, the dual-variable vector is updated with the Qt-
gradient of the squared-distance function. This makes two practical
advantages in online regression involving sparse structures. First,
the use of the squared-distance function avoids the situation that the
gradient vector becomes undesirably large for large inputs, stabiliz-
ing the algorithm. Second, the use of Qt-metric guides the update
direction towards the true solution. Assembling them together, the
proposed algorithm enjoys a notable sparsity-seeking property. Nu-
merical examples for sparse-system estimation and echo cancella-
tion show the advantages of the proposed algorithm.

2. PRELIMINARIES

2.1. Projection-based Method

We denote by R
a×b the set of real a × b matrices, and by N the set

of all nonnegative integers. Also we denote by wT the transpose of
a vector w := [w1, w2, · · · , wn]T ∈ R

n. We consider an online
regularized stochastic optimization problem

min
w∈Rn

E [ϕt(w)] + ψt(w), t ∈ N, (1)

where t is the time index, E stands for expectation, ψt is a possibly
nonsmooth regularization term, and

ϕt(w) :=
1

2
d2Qt

(w, Ct). (2)

Here, dQt(w, Ct) := min
z∈Ct

||w − z||Qt
is the Qt-metric distance

for a positive definite matrix Qt := diag(qt,1 . . . , qt,n) ∈ R
n×n

between an arbitrary point w ∈ R
n and a closed convex set Ct ⊂

R
n, where ||w||Qt

:=
√

〈w,w〉Qt
is the Qt-norm induced by

the inner product 〈w,z〉Qt
:=
√
wTQtz, w,z ∈ R

n. The Qt-
gradient of ϕt at the previous estimate wt−1 ∈ R

n is given by

gt := ∇Qtϕt(wt−1) = wt−1 − PQt
Ct

(wt−1), (3)
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where PQt
Ct

(w) := arg min
z∈Ct

||w − z||Qt
is the Qt-projection onto

Ct. In the case of ψt = 0 (i.e., the case of unregularized stochastic
optimization problems), the SGD update is given by

wt := wt−1 − ηgt, (4)

where η ∈ [0, 2] is the step size. Note here that the projection op-
erator is nonexpansive (i.e., Lipschitz continuous with constant 1),
and the gradient operator ∇Qtϕt is also nonexpansive. The gradi-
ent vector has the following property:

gt = 0 ⇔ PQt
Ct

(wt−1) = wt−1 ⇔ wt−1 ∈ Ct. (5)

The algorithm (4) is reduced to the proportionate affine projection
algorithm (PAPA) [21, 22] if Ct is a set of vectors that makes the
instantaneous errors for several previous inputs to be simultaneously
zero. If the instantaneous error for the current input is only taken into
account, PAPA is reduced to the (improved) proportionate NLMS
(PNLMS) algorithms [3, 4, 23]. If the metric is Euclidean, PAPA
and PNLMS are further reduced to the affine projection algorithm
(APA) [24, 25] and NLMS, respectively.

2.2. Dual Averaging

To solve (1) in the case of ψt = 0, Nesterov has proposed the dual
averaging method in [12], which aims to minimize

lt(w) :=
1

t

t∑
i=1

[
ϕi(wi) + 〈gi,w −wi〉In

]
, (6)

where In is the n× n identity matrix. The lower linear model (6) is
an average of affine minorants of ϕi(wi), i = 1 . . . t, for Qi := In.
The simple dual averaging update is given by

wt : = arg min
w∈Rn

(lt(w) + μth(w))

= arg min
w∈Rn

(〈st
t
,w
〉
In

+ μth(w)

)
, (7)

where μt = O( 1√
t
), and st :=

∑t
i=1 gi, h(w) is the so-called

prox-function. The scheme in (7) has been shown to be primal-dual
[12].

3. PROJECTION-BASED DUAL AVERAGING

We present the proposed PDA algorithm, which is a projection-based
online sparse estimation framework based on the dual averaging.
The update equation is given by

wt : = arg min
w∈Rn

(
〈st,w〉Qt

+
||w||2Qt

2η
+ ψt(w)

)

= arg min
w∈Rn

(
ηψt(w) +

1

2
||w + ηst||2Qt

)

= proxQt
ηψt

(−ηst), (8)

where the proximity operator is defined, for w ∈ R
n, as [26, 27]

proxQt
ηψt

(w) := arg min
z∈Rn

(
ηψt(w) +

1

2
||w − z||2Qt

)
. (9)

(R2, 〈·, ·〉Qt
)(R2, 〈·, ·〉In

)

||w||In,1||w||In,1

||w||Q1
t ,1
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t ,1
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Fig. 1. Unit balls for different norms in (R2, 〈·, ·〉Qt
) and

(R2, 〈·, ·〉In
) in the case of qt,1 < qt,2.

3.1. Application to Online Regression

We apply the PDA algorithm to an online regression problem. Let
xt ∈ R

n be the input vector, and yt := wT
∗xt + νt ∈ R is the

output at time instant t with the unknown vector w∗ ∈ R
n and the

additive noise νt ∈ R. Define

Ct :=

{
w ∈ R

n |
∣∣∣∣∣∣XTw − yt

∣∣∣∣∣∣2
In

= 0

}
, (10)

where Xt := [xt · · ·xt−r+1] ∈ R
n×r and yt := [yt, . . . , yt−r+1]

T

∈ R
r for some r ∈ N

∗ := N \ {0}. The projection onto the linear
variety Ct is given by

PQt
Ct

(wt−1) := wt−1 −Q−1
t X†

t (X
T
t wt−1 − yt), (11)

where X†
t is the Moore-Penrose pseudo-inverse. In practice, X†

t is
replaced by Xt(X

T
t Q

−1
t Xt + δIn)

−1, where δ > 0 is the reg-
ularization parameter for numerical stability. We mention here that
(XT

t Q
−1
t Xt+ δIn)

−1 normalizes the input vectors. The metric is
designed as follows [28]:

Qt :=
α

n
In +

1− α

St
Q̃−1
t , (12)

where Q̃t := diag(|wt−1,1|, . . . , |wt−1,n|) + εIn for some ε > 0,
α ∈ [0, 1], and St :=

∑n
i=1(|wt−1,i|+ ε)−1.

The regularization term is defined as

ψt(w) = λ ||w||Q2
t ,1

:= λ
n∑
i=1

q2t,i|wi|, (13)

where λ > 0 is the regularization parameter. Figure 1 illustrates
the unit balls for three norms in the Hilbert spaces (R2, 〈·, ·〉In

) and
(R2, 〈·, ·〉Qt

): the 
1 norm ||w||In,1
:=

∑n
i=1 |wi|, a weighted


1 norm ||w||Q1
t ,1

:=
∑n
i=1 qt,i|wi|, and ||w||Q2

t ,1
in (13). One

can see that the 
1 ball has a “fat” shape in (R2, 〈·, ·〉Qt
). This

actually forces the proximity operator to shrink the large component
more than the small component, yielding an undesirable bias. To
avoid this and to shrink the small component more, we employ the
norm ||w||Q2

t ,1
in (13), of which the unit ball has a “tall” shape in

(R2, 〈·, ·〉Qt
). The proximity operator for the ψt in (13) is given by

proxQt
ηψt

(w) =
n∑
i=1

eisgn(wi) [|wi| − qt,iλη]+ , (14)
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Table 1. PDA for online regression.
PDA for regression problem
Requirement: λ > 0, η ∈ [0, 2], α ∈ [0, 1]

r ∈ N
∗, δ > 0

Initialization: s0 = 0
Iteration: For t = 0, 1, 2, · · ·
1. gt := wt−1 − PQt

Ct
(wt−1) with (11)

2. st = st−1 + gt
3. wt := proxQt

ηψt
(−ηst) with (14)

where {ei}ni=1 is the standard basis of R
n, sgn(·) is the signum

function, and [·]+ is the hinge function. The proposed algorithm for
online regression is summarized in Table 1. Although the proposed
PDA algorithm needs to store the two variables wt and st as in
RDA and ADAGRAD-RDA (see Section 3.2), the computational
complexity is O(n) for r = 1, 2, which is a typical choice.

3.2. Relation to Prior Work

APFBS: One can apply the iterates wt := proxQt
ηψt

(wt−1 − ηgt)
to (1). This is actually a special case of APFBS [8, 9], which re-
sembles the FOBOS algorithm [10] in the sense of using forward-
backward splitting for online tasks. Note however that APFBS ex-
plicitly uses (the sum of multiple) squared-distance functions to-
gether with variable metrics, whereas FOBOS considers the ordinary
least square cost ϕLS

t (w) := 1
2

(
yt −wTxt

)2 for regression with a
fixed metric. APFBS is a projection-based forward-backward split-
ting algorithm, while PDA is based on RDA [11]. Figure 2 shows
the difference between the forward-backward splitting method [29]
and RDA. One can see that the effects of the proximity operator ac-
cumulate over the iteration. This actually increases the estimation
biases, and APFBS therefore has a tradeoff between the strength of
regularization and the estimation accuracy. RDA is free from the ac-
cumulation issue, yielding high estimation accuracy together with a
high level of sparsity.
ADAGRAD-RDA: ADAGRAD [30] is one of the celebrated online
learning methods in machine learning. The idea is to reduce the vari-
ance of the (sub)gradient vector by summing up the outer-products
of the history of the (sub)gradient vectors to build a metric. The
ADAGRAD algorithm was applied to two types of algorithms: RDA
and the composite mirror descent [31, 32] (which is a generaliza-
tion of FOBOS [10]). ADAGRAD-RDA has some similarities to the
proposed method in the sense that both methods are based on RDA
and employs variable metrics. The remarkable differences are, how-
ever, that the proposed method (i) seeks to minimize the “normal-
ized” squared errors coming from the squared-distance cost (2) and
(ii) utilizes a sparsity-promoting metric Qt. ADAGRAD-RDA uses
the ordinary least square cost ϕLS

t (w). The gradient of ϕLS
t (w)

can be disturbed by large inputs, which makes the algorithm unsta-
ble. Figure 3 shows the difference among the anti-gradient vectors
−∇ϕLS

t (w), −∇ϕt(w), and −∇Qtϕt(w). The squared-distance
cost (2) robustifies the gradient against large inputs. In addition, the
metric Qt guides the update direction towards the optimal point w∗,
leading to convergence acceleration.

4. NUMERICAL EXAMPLES

We show the efficacy of the proposed algorithm first in a simple
sparse-system estimation problem and then in an acoustic echo can-

grad

grad

Forward-Backward Splitting

RDA

gradient

gradient

prox

prox

w∗

w∗

w1

w1 w2

w2

w3

w3 w4

w4

s1 s2
s3 s4

Fig. 2. Illustrations of forward-backward splitting and RDA.

−∇ϕLS
t (w)

−∇ϕt(w)

−∇Qtϕt(w) w∗

normalization

variable metric

w2

w1

Fig. 3. The anti-gradients for a large input vector.

cellation problem. We compare the proposed algorithm with APA,
PAPA, APFBS, RDA, and ADAGRAD-RDA. The RDA, ADAGRAD-
RDA algorithms use ϕLS

t (w) and ψt(w) := λ ||w||In,1
. The other

algorithms use ϕt(w) in (2) and the weighted 
1 norm in (13). In
both experiments, the system mismatch ||w∗ −wt||2In

/||w∗||2In
is

used as a performance measure. Although there are some possible
choice for Qt such as in [3, 4, 23, 28], the metric in (12) are used
for PAPA, APFBS, and PDA for fairness. In both experiments, the
system mismatch is averaged over 300 independent trials.

4.1. Sparse-System Estimation

We let the proportion of the zero components of the true coeffi-
cient vector w∗ ∈ R

1000 be 90%, and the nonzero components
are selected randomly from [−4, 4]. The noise νt is zero-mean
i.i.d. Gaussian with variance 0.01. The input vector xt ∈ R

1000 is
randomly drawn from the i.i.d. uniform distribution over [−2, 2].
The parameters for each algorithm are chosen so that the speeds of
initial convergence are nearly the same, and are shown in Table 2.

Figure 4(a) depicts the learning curves. One can see that the
entire performance of PDA outperforms the other algorithms. The
proportion of the zero components of the estimated coefficient vec-
tor is given as follows: APA (0%), PAPA (0%), APFBS (0%),
RDA (11.6%), ADAGRAD-RDA (89%), and PDA (90%). PDA
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Table 2. Parameters for sparse-system estimation.
Algorithms η λ α r δ ε

APA 0.16 - - 1 10−5 -
PAPA 0.14 - 0.8 1 10−5 10−5

APFBS 0.14 10−3 0.8 1 10−5 10−5

RDA 0.01 10−3 - - - -
ADAGRAD 0.17 10−3 - - - -

PDA 0.13 3× 103 0.8 1 10−5 10−5

Table 3. Parameters for echo cancellation.
Algorithms η λ α r δ ε

APA 0.3 - - 2 10−15 -
PAPA 0.3 - 0.2 2 10−15 10−15

APFBS 0.2 10−2 0.3 2 10−15 10−15

RDA 1 10−4 - - - -
ADAGRAD 0.3 10−4 - - - -

PDA 0.2 25.5 0.3 2 10−15 10−15

and ADAGRAD-RDA estimates the zero components accurately (see
Section 3.2). Figure 4(b) depicts the proportion of zero components.
One can see that PDA achieves an accurate sparsity-level remarkably
faster than the other algorithms.

4.2. Echo Cancellation

Figure 5(a) shows the amplitude of speech signal and Figure 5(b)
shows the echo path used in the experiments. The sampling fre-
quency of speech signal and echo path is 8000 Hz. The learning
is stopped whenever the amplitude of input signal is below 10−4.
The parameters for each algorithm are shown in Table 3. The noise
is zero-mean i.i.d. Gaussian with the signal noise ratio (SNR) 20
dB. Figure 6 shows the learning curves. The proportion of the zero
components of the estimated coefficient vector is given as follows:
APA (0%), PAPA (0%), APFBS (4.1%), RDA (51.4%), ADAGRAD-
RDA (90.0%), and PDA (64.8%). Note here that the regularization
parameter for each algorithm is chosen to give the best convergence
behaviors. In this experiment, the mild sparsity of PDA yields a
reasonably good convergence behavior. The use of the metric Qt

allows PAPA, APFBS, and PDA to attain fast initial convergence.
In addition, PDA achieves the lowest system mismatch due to the
strong regularization.

5. CONCLUSION

We proposed the projection-based dual averaging (PDA) algorithm,
which features the input-vector normalization and the sparsity-
seeking variable-metric. The input-vector normalization actually
came from the squared-distance function to a closed convex set.
Although the squared-distance function has been used in many
adaptive filtering algorithms including NLMS, APA, APSM, and
APFBS, its application to the dual averaging method has not been
studied previously to the best of authors’ knowledge. The similar-
ities and dissimilarities between PDA and ADAGRAD-RDA were
clarified. An application of PDA to an online regression problem
was presented. The numerical examples demonstrated the better
sparsity-seeking and learning properties for sparse-system estima-
tion and the faster convergence for echo cancellation compared to
the existing methods including ADAGRAD and APFBS. Our future
works of particular interests include applications of PDA to machine
learning tasks.

APA PAPA
APFBS

RDA

AdaGrad-RDA PDA

(a)

RDA
AdaGrad-RDA

PDA True (90%)

APA, PAPA, APFBS

(b)

Fig. 4. Results for sparse-system estimation.

(a) Speech signal (b) Echo path

Fig. 5. Amplitudes of speech signal and echo path.

APA

PAPA APFBS

RDA

AdaGrad-RDA

PDA

Fig. 6. System mismatch for echo cancellation.
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