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ABSTRACT

In this paper, we introduce a discriminative training algorithm of the
non-negative matrix factorization (NMF) model for single-channel
enhancement of convolutive noisy speech. The basis vectors for
the clean speech and noises are estimated simultaneously during the
training stage by incorporating the concept of classification from ma-
chine learning. Specifically, we employ the probabilistic generative
model (PGM) of classification, specified by an inverse Gaussian dis-
tribution, as a priori structure for the basis vectors. Both the NMF
and classification parameters are obtained by using the expectation-
maximization (EM) algorithm, which guarantees convergence to a
stationary point. Experimental results show that the proposed algo-
rithm provides better enhancement performance than the benchmark
algorithms.

Index Terms— Single-channel speech enhancement, non-
negative matrix factorization, discriminative training, probabilistic
generative model, classification

1. INTRODUCTION

Numerous algorithms for single-channel speech enhancement, aim-
ing at removing the background noise from a noisy speech, have
been proposed in the past: such as spectral subtraction [1], minimum
mean-square error (MMSE) estimator [2] or subspace decomposi-
tion [3]. These classical methods, however, tend to provide limited
performance in adverse noisy environments, e.g., low input signal-
to-noise ratio (SNR) or non-stationary noise conditions. Recently,
non-negative matrix factorization (NMF) methods have been suc-
cessfully applied to diverse problems including source separation [4]
and speech enhancement [5]. In general, NMF is a dimensionality
reduction tool that decomposes a given matrix into basis and activa-
tion matrices with non-negative elements constraint [6]. In audio and
speech applications, the magnitude or power spectrum is interpreted
as a linear combination of the basis vectors, which can be obtained
a priori using training data.

Most existing single-channel source separation or speech en-
hancement algorithms consider an instantaneous mixture, i.e., the
noisy speech is obtained by simply adding the anechoic background
noise to the clean speech. An extension of the conventional NMF
model, known as convolutive NMF (CNMF) [7] has been proposed
to effectively capture the time-varying characteristics of the audio
or speech signals, and has been applied to speech separation [7] and
speech enhancement [8, 9] problems. However, the term convolutive
in CNMF indicates that the given spectrum is modeled as a shifted
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sum of time-varying basis matrix and hence, these algorithms do not
consider the explicit convolutive mixing process specified by a mix-
ing filter such as room impulse response (RIR).

Another problem of the NMF-based framework is that the ba-
sis vectors of the different sources may share similar characteristics.
For example, the basis vectors of speech spectrum can represent the
noise spectrum and hence, the enhanced speech may contain noise
components that have similar features to the clean speech. Recently,
several discriminative training algorithms of the NMF model with
application to source separation or speech enhancement for instanta-
neous mixtures have been proposed to solve this problem, in which
the goal is to train the basis vectors of each source in a way that
prevents them from representing each other (see [10] and references
therein). However, such training criteria have not been yet employed
for convolutive noisy speech.

In this paper, we introduce a discriminative training algorithm
of NMF model for single-channel enhancement of convolutive noisy
speech, which is an extension of our previous work in [10], where
the main idea was to estimate the basis matrices during the train-
ing stage by constraining them to belong to one of several classes.
To this end, we considered a traditional Gaussian-distributed prob-
abilistic generative model (PGM) of classification [11] along with
the NMF model [12, 13]. In this paper, we explicitly formulate and
exploit the convolutive signal model motivated by [12], and instead
employ an inverse Gaussian distribution as the PGM for classifica-
tion to bring more coherence into the NMF model. The update rules
of the NMF model and the PGM parameters for classification are
jointly estimated via the expectation-maximization (EM) algorithm.
Experimental results show that the proposed algorithm provides bet-
ter enhancement performance than the benchmark algorithms.

2. SIGNAL MODEL

The convolutive noisy speech can be expressed in the short-time
Fourier transform (STFT) domain as [12]

Ykl = Akxkl +Bkl (1)

where Ykl is the complex-valued STFT of the convolutive noisy
speech, xkl = [SklNkl]

T ∈ C2×1 is a point source vector consisting
of the clean speech and noise, Skl andNkl, Ak = [AS

k A
N
k ] ∈ C1×2

is a vector of the mixing filters (e.g., RIRs which model the paths
from the clean speech and noise to the microphone),Bkl is a residual
error (independent of xkl), and k = {1, ...,K} and l = {1, ..., L}
are the frequency and time frame indices. The residual error, which
is shown to prevent the EM algorithm from potential numerical in-
stabilities and slow convergence [12], can be modeled by a stationary
Gaussian random process with zero-mean and variance σ2

k [12, 14].
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The goal is to recover the clean speech in either the form of the point
source Skl or the so-called image source ZS

kl = AS
kSkl [12, 14]. In

this paper, we consider the latter case to evaluate the enhancement
performance. In the following, we introduce two underlying PGMs
which will be employed in the proposed framework: NMF and clas-
sification models.

2.1. NMF model

For a given matrix V ∈ RK×L
+ , NMF finds a local optimal decompo-

sition of V ≈ WH, where W = [wkm] ∈ RK×M
+ is a basis matrix,

H = [hml] ∈ RM×L
+ is an activation matrix, R+ denotes the set of

non-negative real numbers, and M is the number of basis vectors.
The factorization is obtained by minimizing a suitable cost func-
tion, such as Kullback-Leibler (KL) [6] or Itakura-Saito (IS) [13]
divergence. In this paper, we consider the IS-divergence since it is
known to provide a desirable statistical interpretation of the audio
and speech signals [12, 13]. Moreover, we can explicitly employ the
complex-valued spectrum which is necessary to handle the convolu-
tive signal model given by (1).

Within a statistical framework, the complex-valued observation
Xkl is assumed to be a sum of M latent variables, cmkl, as

Xkl =

M∑
m=1

cmkl, cmkl ∼ Nc(0, wkmhml) (2)

where Nc(µ, σ
2) is a complex Gaussian distribution with mean µ

and variance σ2. Assuming that the latent variables are mutually
independent, it has been shown that maximizing the log-likelihood
function (LLF) based on the model (2) with respect to wkm and hml

is equivalent to minimizing the IS divergence [13].

2.2. Classification model

In the classification problem, the input vector w = [wk]∈RK under
test is assigned to one of I classes. The goal is to find a partition
of the observation space into decision regions that will minimize the
classification error, by using training data and their corresponding
class labels. Among various approaches to solve the classification
problem (e.g, PGM and discriminative modeling [11]), we consider
the PGM since it can provide the necessary a priori distributions to
be used in the proposed framework1.

By ignoring possible correlations between different entries in w,
the class-conditional density based on the inverse-Gaussian distribu-
tion can be expressed as p(w|di = 1) =

∏K
k=1 IN (µi

k, λk) where
di ∈ {0, 1} is a target class label for the class i ∈ {0, ..., I − 1} and

IN (µ, λ) =

(
λ

2πw3

)1/2

exp

[
−λ(w − µ)2

2µ2w

]
(3)

is the inverse-Gaussian distribution defined for a positive value (w >
0) with mean µ and shape parameter λ.

Suppose we have a training set W = [w1, ...,wM ] and D =
[d1, ..., dM ], where dm = [dim] with dim ∈ {0, 1} is an I×1 target
class label vector such that

∑
i dim = 1. Assuming that the columns

wm are independently drawn, the likelihood function is given by

p(W,D;θC) =

M∏
m=1

I−1∏
i=0

[p(wm|di = 1)pi]
dim (4)

1The term discriminative training used in this paper differs from train-
ing discriminative model, where the latter aims at maximizing the posterior
distribution. Although some authors consider both terms equivalently (e.g.,
[15, 16]), we refer to the former as a training method aiming at estimating
arbitrary parameters to be distinct (e.g., [17, 18]).

where θC = {{pi, {µi
k}}I−1

i=0 , {λk}} is a PGM parameter set for
classification and pi , p(di = 1) is the prior class probability. The
set θC can be estimated via the maximum likelihood (ML) criterion.

3. PROPOSED ALGORITHM

In this section, we first explicitly address the prior structures for the
PGM in (1), which will be used in the proposed framework. Subse-
quently, we explain the proposed training and enhancement stages.

3.1. Prior structures

We denote byMi the number basis vectors in class i (such thatM =∑
iMi), and by Li the number of time frames in class i. For the

basis vectors, the log-likelihood in (4) can be simply rearranged as

p(W;θC) =

I−1∏
i=0

Mi∏
m=1

[
p(wi

m|di = 1)pi
]
. (5)

where p(wi
m|di = 1) is given in (4), and we omit the dependence

on D in p(W,D;θC) hereafter for convenience.
For the activations, we employ sparse NMF regularization,

which can be implemented by modeling the entries of H with an
exponential distribution within a statistical framework [19]. Assum-
ing that the entries are independent and identically distributed, the
prior of H can be written as

p(H; η) =

I−1∏
i=0

ηMiLi exp

[
−η

Mi∑
m=1

Li∑
l=1

hi
ml

]
(6)

where the parameter η controls the degree of sparsity.

3.2. Training stage

In the proposed framework, we use the class index i = 0 for the
clean speech and i = 1, ..., I − 1 for the different noise types. Let
us denote by Zi = [Zi

kl] and Xi = [Xi
kl] the i-th image and point

source spectra, respectively. For given training data sets of the clean
speech and noise image spectra Z = {Zi}, our goal is to estimate
θ = {{Ai

k}, {wi
km}, {hi

ml}} and θC jointly. The complete-data
LLF can be expressed as

ln p(Z,C,W,H;θC , η)

= ln p(Z|C) + ln p(C|W,H) + ln p(W;θC) + ln p(H; η)

c
= −

I−1∑
i=0

K∑
k=1

Li∑
l=1

[
ln(σi

k)2 + |Zi
kl −Ai

kX
i
kl|2(σi

k)−2
]

−
I−1∑
i=0

K∑
k=1

Li∑
l=1

Mi∑
m=1

[
ln(wi

kmh
i
ml) +

|cm,i
kl |

2

wi
kmh

i
ml

]

+

I−1∑
i=0

K∑
k=1

Mi∑
m=1

[
1

2
(lnλk−3 lnwi

km)− λk(wi
km − µi

k)2

2(µi
k)2wi

km

]

+

I−1∑
i=0

[
MiLi ln η − η

Mi∑
m=1

Li∑
l=1

hi
ml

]
(7)

where C = {cm,i
kl } is the set of latent variables defined in (2), and c

=
indicates equality up to a constant term.

Application of the EM algorithm to (7) consists of two stages: i)
expectation step (E-step), computing the posterior distribution of the
latent variable given the observation and the expectation of the suffi-
cient statistics accordingly, and ii) maximization step (M-step), esti-
mating the parameters by maximizing the conditional expectation of
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the complete-data LLF with respect to the posterior distribution (i.e.,
LC(θ|θ′) =

∫
ln p(Z,C|θ)p(C|Z,θ′)dC, where θ′ is the parame-

ter estimated in the previous EM iteration). Defining um,i
kl , |cm,i

kl |
2,

the E-step is found to be [12]:

ûm,i
kl = |ĉm,i

kl |
2 + (1−Gi

c,kl)w
i
kmh

i
ml (8)

R̂i
zx,k =

1

Li

Li∑
l=1

Zi
kl(X̂

i
kl)
∗ (9)

R̂i
xx,k =

1

Li

Li∑
l=1

[
|X̂i

kl|2 + (1−Gi
x,klA

i
k)vikl

]
(10)

where * refers to a conjugate operation, vikl =
∑Mi

m=1 w
i
kmh

i
ml and

X̂i
kl = Gi

x,klZ
i
kl, Gi

x,kl = vikl(A
i
k)∗(Σi

z,kl)
−1 (11)

ĉm,i
kl = Gi

c,klZ
i
kl, Gi

c,kl = (wi
klh

i
ml)(A

i
k)∗(Σi

z,kl)
−1 (12)

Σi
z,kl = |Ai

k|2vikl + (σi
k)2. (13)

The M-step is as follows. The mixing filter is found to be

Ai
k = R̂zx,kR̂

−1
xx,k. (14)

The basis elements are found by setting the partial derivative of
LC(θ|θ′) with respect to wi

km to zero, which leads to solving the
following second-order polynomial equation:

(wi
km)2+

(2+3Li)(µ
i
k)2

λk︸ ︷︷ ︸
, qiw1

wi
km−(µi

k)2
(

1+
2

λk

Li∑
l=1

ûm,i
kl

hi
ml

)
︸ ︷︷ ︸

, qiw2

=0. (15)

Hence, the resulting update rule of wi
km is found to be

wi
km =

2qiw2

q2w1 +
√

(qiw1)2 + 4qiw2

(16)

Following a similar approach as for the basis estimation, the update
rule of hi

ml is obtained as

hi
ml =

2qih2

K +
√
K2 + 4ηqih2

(17)

where qih2 ,
∑K

k=1(ûm,i
kl /w

i
km). The residual noise variance,

(σi
k)2, also can be estimated by maximizing LC(θ|θ′). However,

we instead follow a strategy called simulated annealing with noise
injection method introduced in [12], since it is shown to provide
faster convergence of the EM iteration. Specifically, the residual
noise variance is initialized with an average channel empirical vari-
ance divided by 100 (i.e., (σi

k)2 =
∑

l |Z
i
kl|2/(100Li)), and is grad-

ually decreased through iterations to a small value, e.g., 1e-10. A
random noise is added to Zi at each EM iteration, accordingly.

The hyper-parameter set θC is estimated by maximizing the
marginal likelihood p(Z|H;θC) =

∫
p(Z,W|H;θC)dW. Assum-

ing that W is well-determined, maximizing the marginal likelihood
becomes equivalent to maximizing (7) [10, 11]. Consequently, the
set θC is simply found by applying the ML criterion to (5), where
the resulting estimate in a closed form is interleaved with the EM
update, as

µ̂i
k =

1

Mi

Mi∑
m=1

wi
km,

1

λ̂k

=
1

M

I−1∑
i=0

Mi∑
m=1

(
1

wi
km

− 1

µ̂i
k

)
(18)

and pi = Mi/M .

To prevent scale indeterminacies, we add a normalization step
by adopting the strategies in [12] and [20]. That is, after comput-
ing (14) and (16), we normalize Ai

k by its magnitude |Ai
k| and scale

wi
km accordingly, and then compute (17). As for initialization, we

generate random complex numbers for Ai
k. For the basis and activa-

tions, we apply the standard multiplicative update (MU) rules based
on KL-divergence [6] to the magnitude-square of the image source
spectra as in [12] for 10 iterations.

3.3. Enhancement stage

During the enhancement stage, by concatenating and fixing the basis
matrices of the clean speech and noise obtained during the train-
ing stage as W = [WS WN ], we estimate the mixing filters, Ak,
and activation matrix, H = [HT

S HT
N ]T , from the convolutive noisy

speech Y. The parameter estimation via the EM algorithm can be
derived similarly as in the training stage. Based on the signal model
in (1), the necessary sufficient statistics corresponding to (9)-(10)
and the mixing filter in (14) take either a vector or matrix form. A
detailed expression for the paramter estimation can be found in [12],
where the activation matrix H is estimated by (17) in the proposed
framework. Once the parameters are obtained, we estimate the im-
age spectrum of the clean speech using (11), (13) and ZS

kl = AS
kSkl,

where we ignore the small value of the residual noise variance σ2
k.

Moreover, since the mixing filter is normalized, the estimated image
spectrum of the clean speech can be written as

ẐS
kl =

p̂Skl
p̂Skl + p̂Nkl

Ykl (19)

where p̂Skl and p̂Skl respectively denote the estimated power spectral
densities (PSD) of the clean speech and noise. The latter are obtained
via temporal smoothing of the NMF-based periodograms as [10, 21]

p̂Skl = τS p̂
S
k,l−1 + (1− τS)

MS∑
m=1

wS
kmh

S
ml (20)

p̂Nkl = τN p̂
N
k,l−1 + (1− τN )

MN∑
m=1

wN
kmh

N
ml (21)

where τS and τN are the smoothing factors for the clean speech and
noise, respectively. Finally, the enhanced image speech signal in the
time-domain is reconstructed by applying the inverse STFT followed
by the overlap-add method. Note that the set θC can be used for the
noise classification using a Bayes’ rule in advance to the enhance-
ment [10]. In this case, the additional noise basis vector w needed
for the classification can be obtained through [WS w] by applying
the standard MU rule to V = [|Ykl|2]. In this paper, however, we
simply assume that the noise type is known a priori.

4. EXPERIMENTS

We conducted experiments by considering a rectangular room with
dimensions of 4×5×3 m (x× y× z) as illustrated in Fig. 1. A mi-
crophone and three point sources (P1, P2 and P3) were placed at the
elevation of z = 1.3 m. The RIRs with respect to different source
positions were obtained by using the simulator in [22], where we
considered the reverberation time of T60 = 50 and 200 ms. We used
clean speech from the TSP database [23] and noise from the NOI-
SEX database [24], where the sampling rate of all signals was set to
16 kHz. For the clean speech (i = 0), 20 speakers (10 males and
10 females) were chosen, whereas the Factory 1 (i = 1), Buccaneer
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Fig. 1. Room geometry (length in meters, angle in degrees).

1 (i = 2), HF-Channel (i = 3) and Destroyerops (i = 4) were se-
lected2 The corresponding speech and noise files were divided into
two disjoint groups: i) training data, used for estimating the basis
matrix for each class i during the training stage, and ii) test data,
used during the enhancement stage to evaluate the enhancement per-
formance. We considered a speaker-independent (SI) application,
where one universal basis matrix covering all speakers is estimated.
To this end, we constructed the training data of the clean speech by
selecting 3 sentences per speaker and concatenating them, for a to-
tal of 60 sentences (2 minutes long signal), whereas a 2 minutes long
signal was used for each type of noise. All training data were located
at P1 and then convolved with the corresponding RIR to obtain the
image source signals.

The convolutive noisy speech signals were generated from the
test data by summing the image signals of the clean speech and
noise. Specifically, we selected three sentences (8 seconds long sig-
nal) per speaker for the clean speech, whereas we selected 10 sec-
onds long segments for each noise type. The point sources of the
clean speech and noise were located at P3 and P2, respectively (see
Fig. 1). The image signals of the clean speech and noise were ob-
tained by convloving the point source signals with their correspond-
ing RIRs. Subsequently, the image noise signal was added to the
image speech signal to have input SNR of 0 and 5 dB. Regarding
the implementation, the STFT of each signal was obtained by us-
ing a Hanning window of 512 samples with 75% overlap. We used
Mi = 60 basis vectors for all i. Sparsity and temporal smoothing
factors were selected as η = 5 and (τS , τN ) = (0.4, 0.9).

We considered the perceptual evaluation of speech quality
(PESQ) [25] and signal-to-distortion ratio (SDR) [26] as the objec-
tive measures, where a higher value indicates a better result. To
compare the proposed method, we implemented the standard NMF
method in [6] (see [10] for its application to supervised speech en-
hancement), CNMF method [7] where we used the maximum shift
length of 3 for the convolution process of the basis and activation
matrices. In addition, we implemented the discriminative training
algorithm of the NMF model based on class probabilities in [10],
which will be referred to as DCP. Basic settings such as the STFT
analysis and synthesis process, the number of basis vectors and tem-
poral smoothing factors were kept identical for fair comparison. The
average results over all speakers for T60 = 50 and 200 ms are re-

2Although the considered noise types are more likely to originate outside
the room, we assume that they are generated from a point source inside the
room for a practical simulation.

Table 1. Average results for T60 =50 ms
Input Eval. Noisy NMF CNMF DCP Prop.SNR [6] [7] [10]

Fa
ct

.1 0 dB PESQ 1.40 1.66 1.70 1.75 1.85
SDR 0.04 3.95 4.50 6.21 5.95

5 dB PESQ 1.76 2.07 2.11 2.10 2.29
SDR 5.03 8.84 9.34 9.96 10.23

B
uc

c.
1 0 dB PESQ 1.25 1.69 1.73 1.88 2.06

SDR 0.03 4.39 5.10 7.17 7.53

5 dB PESQ 1.59 2.07 2.11 2.11 2.43
SDR 5.02 9.23 9.68 10.53 10.98

H
F-

C
ha

n. 0 dB PESQ 1.20 1.69 1.69 1.95 2.06
SDR 0.04 5.38 6.15 8.27 8.82

5 dB PESQ 1.48 2.04 2.07 2.10 2.39
SDR 5.02 9.95 10.57 11.39 11.95

D
es

t.o
ps 0 dB PESQ 1.59 1.89 2.00 1.95 2.14

SDR 0.03 4.15 6.34 6.43 7.19

5 dB PESQ 1.99 2.29 2.39 2.29 2.50
SDR 5.02 9.04 10.58 9.64 11.07

Table 2. Average results for T60 = 200 ms
Input Eval. Noisy NMF CNMF DCP Prop.SNR [6] [7] [10]

Fa
ct

.1 0 dB PESQ 1.42 1.67 1.66 1.74 1.81
SDR 0.06 3.32 3.18 4.97 4.63

5 dB PESQ 1.81 2.08 2.07 2.12 2.23
SDR 5.04 8.12 8.13 9.05 9.27

B
uc

c.
1 0 dB PESQ 1.35 1.73 1.75 1.89 2.01

SDR 0.04 4.54 5.00 6.79 7.29

5 dB PESQ 1.71 2.12 2.14 2.22 2.40
SDR 5.03 9.20 9.78 10.27 11.04

H
F-

C
ha

n. 0 dB PESQ 1.22 1.68 1.59 1.84 1.93
SDR 0.04 5.20 5.12 6.71 7.71

5 dB PESQ 1.50 2.03 1.95 2.15 2.26
SDR 5.03 9.72 9.85 9.76 11.20

D
es

t.o
ps 0 dB PESQ 1.65 1.92 1.95 1.98 2.05

SDR 0.05 4.00 4.18 5.47 5.51

5 dB PESQ 2.07 2.32 2.34 2.35 2.44
SDR 5.03 8.67 8.96 9.05 9.84

spectively shown in Table 1 and 2. We can see that the proposed
method provided better results than the benchmark algorithms under
considered input SNRs, except in specific case, e.g., SDR value for
the Factory 1 noise at 0 dB input SNR. It also can be seen that the
performance for T60 = 200 ms has been degraded compared to the
50ms. The main reason is that the signal model in (1) is appropriate
when the RIR is much shorter than the STFT analysis window length
[12, 14]. In order to improve the enhancement performance even for
a highly reverberant environment, it would be necessary to consider
an extended signal model, e.g., the latent variable cmkl in (2) modeled
by an auto-regressive process [27], which will be considered in our
future work.

5. CONCLUSION

We introduced a discriminative training algorithm of NMF model for
single-channel enhancement of convolutive noisy speech. The con-
volutive signal model has been explicitly formulated and employed
in the proposed framework. Moreover, the basis vectors for the clean
speech and noises were estimated simultaneously during the training
stage by employing the PGM of classification, specified by an in-
verse Gaussian distribution, as a priori structure. Both the NMF and
classification parameters were obtained via the EM algorithm. Ex-
perimental results under different reverberant conditions showed that
the proposed algorithm provides better enhancement performance
than the benchmark algorithms.
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