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ABSTRACT

Recent works on adaptive sparse signal modeling have demonstrated
their usefulness in various image/video processing applications. As
the popular synthesis dictionary learning methods involve NP-hard
sparse coding and expensive learning steps, transform learning has
recently received more interest for its cheap computation. However,
exploiting local patch sparsity alone usually limits performance
in various image processing tasks. In this work, we propose a
joint adaptive patch sparse and group low-rank model, dubbed
STROLLR, to better represent natural images. We develop an image
restoration framework based on the proposed model, which involves
a simple and efficient alternating algorithm. We demonstrate ap-
plications, including image denoising and inpainting. Results show
promising performance even when compared to state-of-the-art
methods.

Index Terms— Sparse representation, Image denoising, Image
inpainting, Block matching, Machine Learning

1. INTRODUCTION

Sparsity of natural images with the synthesis [1, 2], or transform
model [3, 4] has been widely used for image processing. As synthe-
sis dictionary learning methods typically involve an NP-hard sparse
coding step [5], approximate methods [6, 2] are widely used, which
are not efficient for large-scale problems. Alternatively, the trans-
form model provides cheap and exact sparse coding. It models a
signal u ∈ Rn as approximately sparsifiable using a transform W ∈
Rm×n, i.e., Wu = α + e, where α ∈ Rm is sparse, and e is a
small transform-domain modeling error. Natural images are well-
known to be approximately sparse after analytical transforms, such
as the discrete cosine transform (DCT). Recent work on sparsify-
ing transform learning proposed efficient learning algorithms with
convergence guarantees [3, 4], which turn out to be advantageous
in applications including image / video processing [4, 7], magnetic
resonance imaging (MRI) [8], and computational tomography (CT)
[9].

Apart from the local structures exploited by the sparse priors,
natural images contain non-local structures in the form of self-
similarities, exploited by a long line of work starting with non-local
means [10]. Various state-of-the-art image restoration methods –
including BM3D [11], SSC [12], CSR [13], and GSR [14] – group
similar patches within the image via block matching (BM), and
impose non-local structural priors on these groups. Recent work
on image restoration [15, 16], video denoising [17], compressed
sensing image recovery [18], and cardiac cine MRI [19], introduced
a low-rank prior to model similarity between patches within groups,
and showed favorable results compared to other non-local image pri-
ors. More recently, local sparse priors and non-local low-rank priors
have been simultaneously deployed for image restoration problems
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Fig. 1. A simple illustration of the STROLLR model for natural
images, using group low-rankness and patch sparsity

[20]. The low-rank prior was imposed on the data matrix formed by
all patches, without grouping similar patches using BM.

In this paper, we propose a flexible Sparsifying TRansfOrm
Learning and Low-Rank (STROLLR) model that combines the
adaptive transform sparsity of image patches and the low-rankness
of data matrices formed by BM, thus taking full advantage of both
the local sparsity and non-local self-similarities in natural images.
Figure 1 illustrates how STROLLR is used to model natural images.
We develop variational image restoration formulations, for image
denoising and inpainting, based on the proposed model. Efficient
alternating algorithms are derived, with performance improvement
over methods using local sparsity or low-rankness alone. We show
promising numerical results over a set of testing images, even when
compared to popular, or state-of-the-art methods.

2. STROLLR MODEL AND LEARNING

We propose the STROLLR model, in which the data matrix U ∈
Rn×N is approximately sparsifiable by some transform W ∈
Rm×n, i.e., WU = A + E, where A ∈ Rm×N is sparse, and
E is the modeling error matrix with small Frobenius norm. Here
U =

[
u1 | u2 | ... | uN

]
, where each column ui ∈ Rn denotes a

signal. We define a BM operator Vi : U → ViU ∈ Rn×M , which
takes ui to be the reference patch, and selects M patches {uj}i that
are closest to ui in terms of the Euclidean distance ‖uj − ui‖2. The
selected patches {uj}i form the columns of matrix ViU in ascend-
ing order of their Euclidean distance to ui. (We order the patches
so that Vi is well-defined, but the order per se has no effect on our
model.) In addition to patch sparsity, the STROLLR model imposes
a low-rank prior on each ViU via a matrix rank penalty. The joint
sparse coding and low-rank approximation problem in STROLLR
model is as follows,

2297978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



(P1)
{
Â, {D̂i}

}
= argmin

A,{Di}
‖W U −A‖2F + γ2

s ‖A‖0

+ γl

N∑
i=1

{
‖Vi U −Di‖2F + θ2 rank(Di)

}
where the `0 ”norm” counts the number of nonzeros in A, and
rank(·) returns the rank of a matrix. To solve Problem (P1), one
minimizes the modeling and approximation error, including both
sparsity and rank penalties. The optimal Â is called the sparse code
matrix of U , and the optimal D̂i is the low-rank approximation of
the matched block Vi U . The low-rank prior has been widely used
to model spatially similar patch groups [15, 17, 18, 19]. Figure 1
illustrates the relation between image self-similarity and the low-
rank matrix {Vi U} obtained from BM. Here, we use the penalty
rank(Di) to impose a non-local structural prior, which leads to a
simple low-rank approximation algorithm [16].

Instead of using analytical transforms, an adaptively learned W
[4, 3] provides superior sparsity, which serves as a better regularizer
[8, 7, 9]. Generally, the sparsifying transform W can be overcom-
plete [4] or square [3], with different types of regularizers or con-
straints [3]. In this work, we restrict ourselves to learning a square
(i.e., m = n) and unitary (i.e., WT W = In, where In ∈ Rn×n
is the identity matrix) transform [3], which leads to highly efficient
learning and image restoration algorithms [21, 8]. Given the train-
ing data matrix U , the STROLLR learning problem is formulated as
follows:

(P2) min
{W,A,{Di}}

‖W U −A‖2F + γ2
s ‖A‖0 +

γl

N∑
i=1

{
‖Vi U −Di‖2F + θ2 rank(Di)

}
s.t. WTW = In

Previous work proposed simple and exact solution for optimal uni-
tary Ŵ [3] with fixed A. In Section 3, we introduce efficient and
effective image restoration algorithms with the proposed STROLLR
model.

3. IMAGE RESTORATION

3.1. Restoration Framework

We propose a patch-based image restoration framework based on
STROLLR learning. The goal is to recover an image X by re-
constructing all of its overlapping 2D patches {ui}Ni=1 (ui ∈ Rn)
from their corrupted measurements {yi}. The patch measurements
are modeled as yi = Bi ui + hi, where hi is additive noise, and
Bi ∈ Rn×n is a corruption operator (e.g., Bi = In in image denois-
ing problem) for the i-th patch. We propose the following patch-
based image restoration formulation using STROLLR learning,

(P3) min
{W,A,{Di,U}}

‖W U −A‖2F + γ2
s ‖A‖0

+ γl

N∑
i=1

{
‖Vi U −Di‖2F + θ2 rank(Di)

}
+ γf

N∑
i=1

{
‖BiRi U − yi‖22

}
s.t. WTW = In

whereRi selects the i-th column ofU such thatRiU = ui. The data
fidelity term ‖BiRi U − yp‖22 is imposed, with the weight γf . The
BM operator Vi searches for theM most similar patches by comput-
ing and comparing the Euclidean distances between all patch pairs,
which can be very expensive for restoring large X (i.e., N is large).
In practice, we set a squareQ×Q search window, which is centered
at the reference patch [16]. Only the overlapping patches within
the search window are evaluated by the BM operator, assuming the
neighborhood patches normally have higher spatial similarities.

We propose a simple block coordinate descent algorithm frame-
work to solve (P3). Each iteration involves four steps: (i) sparse
coding, (ii) transform update, (iii) low-rank approximation, and (iv)
image patch restoration. Once the iterations complete, we recover
the image by performing an (v) aggregation step.

Sparse Coding. Given the training U and fixedW , we solve the
Problem (P3) for the sparse codes,

Â = argmin
A

‖W U −A‖2F + γ2
s ‖A‖0 (1)

which is the standard transform-model sparse coding problem. The
optimal Â can be obtained using cheap hard thresholding, Â =
Hγs(W U). Here the hard thresholding operator Hv(·) is defined
as

(Hv(Q))a,b =

{
0 , |Qa,b| < v

Qa,b , |Qa,b| ≥ v
where Q ∈ Rn×N is the input matrix, v is the threshold, and the
subscripts a, b index the matrix entries.

Transform Update. We solve for unitary W in (P3) with fixed
A, which is equivalent to the following,

Ŵ = argmin
W

‖W U −A‖2F s.t. WT W = In (2)

With the unitary constraint, the optimal Ŵ has a simple and exact
solution. Denoting the full singular value decomposition (SVD) of
U AT as S ΣGT , the transform update is Ŵ = GST .

Low-rank Approximation. With the BM operators {Vi}, we
solve for each low-rank approximation Di as,

D̂i = argmin
Di

‖Vi U −Di‖2F + θ2 rank(Di) (3)

We form matrix Vi U using BM within the search window, which
is centered at ui. Let ΦΩΨT = Vi U be the full SVD, then D̂i =
ΦHθ(Ω)ΨT is the exact solution.

Patch Restoration. Each of the image patches is restored, with
fixed A, W and {Di}, by solving the following problem,

ûi = argmin
ui

‖W ui − αi‖22 + γf ‖Bi ui − yi‖22

+γl
∑
j∈Ci

‖ui −Dj,i‖22 (4)

where αi denotes the i-th column of the sparse matrix A. The set
Ci contains all indices j’s such that the matrix VjU contains column
ui, i.e., Ci = {j : ui ∈ Vj U}. Thus Dj,i ∈ Rn is the column of
Dj , corresponding to the location of ui in VjU . The variations and
solutions to this step in two exemplary applications will be discussed
in Section 3.2.

Aggregation. Once the iterations complete, one can aggregate
the restored patches to recover the image, by averaging pixels from
weighted patches {ûi} at their respective locations in the image.
Each patch ûi is weighted by the reciprocal of the sparsity of α̂i,
i.e., 1/ ‖α̂i‖0, since a patch with higher sparsity usually contains
more remaining corruption after restoration.
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STROLLR Image Restoration Algorithm Framework
Input: The corrupted image Y , the initial transform W0.
Initialize: Ŵ0 = W0, Û0 =

[
R1Y | R2Y | ... | RNY

]
.

For t = 1, 2, ..., T Repeat
1. Sparse Coding: Ât = Hγs(Ŵt−1Ût−1).

2. Transform Update: Compute StΣtG
T
t =

SVD(Ût−1 Â
T
t ) as the full SVD, then update

Ŵt = SVD(GtS
T
t ).

3. Low-rank Approximation:

(a) Form {Vi Ut−1} using BM.

(b) Compute ΦtΩtΨ
T
t = Vi Ut−1.

(c) Update D̂i,t = ΦtHθ(Ωt)Ψ
T
t ∀i.

4. Patch Restoration: Restore the patch with closed-form so-
lution for denoising or inpainting, to update Ût

End
Aggregate {ûi}Ni=1 to restore the image X̂ .

Fig. 2. STROLLR image restoration algorithm framework.

3.2. Image Denoising and Inpainting

In the patch restoration step, the solution to ûi depends on the op-
erator Bi, which leads to different types of image restoration prob-
lems. We will discuss two examples, namely image inpainting, and
denoising in this section. Both algorithms follow the same image
restoration framework which is summarized in Fig. 2.

Robust Inpainting. When Bi is a diagonal binary matrix with
zeros at the locations corresponding to missing pixels, (P3) becomes
an image inpainting problem. The least squares solution to (P3)
is ûi = {(1 + |Ci|γl)In + γfBi}−1 (WTαi + γl

∑
j∈Ci

Dj,i +

γfBiyi). Since both In and Bi are diagonal matrices, the matrix
inverse and matrix-vector multiplication are simple and cheap.

Image Denoising. When Bi = In, we are solving the patch-
based image denoising problem, with no pixel missing. The de-
noised patches are reconstructed as follow,

ûi = argmin
ui

‖W ui − αi‖22 + γf ‖ui − yi‖22

+γl
∑
j∈Ci

‖ui −Dj,i‖22 (5)

The optimal ûi has a simple least squares solution,

ûi = (WTαi + γfyi + γl
∑
j∈Ci

Dj,i)/(1 + γf + |Ci|γl) (6)

where the denoised patch is equal to the weighted sum of its sparse
code reconstruction, noisy measurement, and block-wise low-rank
approximation.

4. EXPERIMENTS

We demonstrate the promise of the STROLLR based image restora-
tion framework by testing our image inpainting and denoising al-
gorithms on a set of 10 images, as shown in Fig. 3. We set γf
to be inversely proportional to the noise standard deviation σ, i.e.,
γf = γf,0/σ, to reduce the penalty weight when the measurement
becomes more noisy. Additionally, we set γl, γs, and θ to be pro-
portional to σ, i.e., γl = σγl,0, γs = σγs,0 and θ = σθ0. In both

Barbara Lena Airport Baboon Face
5122 5122 10242 5122 2762

Moon Elaine Sailboat Tank Plane
2562 5122 5122 5122 10242

Fig. 3. Testing images used in the image denoising and image in-
painting experiments, with names and sizes below.

Available
σ Smooth LR TL STROLLR

pixels

20%

5 28.9 29.0 29.2 29.3
10 27.4 28.2 28.2 28.3
15 26.9 27.3 27.3 27.4
20 25.5 26.5 26.2 26.5

10%

5 26.9 26.9 27.0 27.1
10 26.0 26.3 26.3 26.5
15 24.8 25.5 25.4 25.6
20 23.7 24.7 24.5 24.9

Average 26.3 26.8 26.8 27.0

Table 1. PSNR values for image inpainting, averaged over 10 testing
images, using patch smooth ordering (Smooth), TL based method,
LR based method, and the STROLLR based method. The best PSNR
value in each row is marked in bold.
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2
×10
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σ = 20

σ = 15

σ = 10

(a) STROLLR objective (b) Corrupted

(c) Inpainted (28.1dB) (d) Ground truth

Fig. 4. STROLLR inpainting illustration for image Face, with 90%
pixels missing: (a) the plots of objective convergence, (b) the cor-
rupted measurement, with noise σ = 10, (c) the inpainted result by
STROLLR, and (d) the ground truth.
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experiments, we set patch size n = 64, block size M = 5n, search
window sizeQ = 35, the penalty weights θ0 = 1.5, and γs,0 = 2.5.
We initialize the sparsifying transform W0 with the square 2D DCT.
We remove the means of the extracted patches before the iterations,
and add them back before the patch aggregation step. To evaluate
the image restoration performance, we measure peak signal-to-noise
ratio (PSNR) of the reconstructed images.

4.1. Image Inpainting

We present preliminary results for our STROLLR based inpainting
method. We randomly remove 80%, and 90% of the pixels of the
entire image, and simulate i.i.d. additive Gaussian noise for the sam-
pled pixels with σ = 5, 10, 15, and 20. We set penalty weights
γf,0 = 10, and γl,0 = 1 × 10−4. Figure 4(a) illustrates the con-
vergence of the objective function over 50 iterations for inpainting
image Face with only 10% pixels available, and noise σ = 10, 15,
and 20. In practice, since the reconstruction PSNR saturates quickly,
we set T = 5 for evaluating the image inpainting performance using
STROLLR method, whose results are compared to those obtained
by popular patch smoothing method [22]. Additionally, to show the
effectiveness using both adaptive sparsity and low-rank regularizers
for inpainting reconstruction, we also compare to the inpainting re-
sults that are obtained using only transform learning (TL) and group
low-rank (LR) regularizers in reconstruction.

Table 1 lists the corrupted and inpainting PSNRs, averaged over
all 10 testing images, obtained using the aforementioned methods,
with the best result for each testing case marked in bold. Using both
LR and TL regularizers, the proposed STROLLR based method per-
forms well for all of the corruption cases. Figures 4(b), 4(c), and
4(d) visualize the the highly corrupted image Face, the inpainted re-
sult by the STROLLR based method, and the ground truth.

4.2. Image Denoising

We present image denoising results using our proposed algorithm in
Sec. 3. We simulate i.i.d. Gaussian noise at 4 different noise levels
(σ = 5, 10, 15, and 20) for the testing images. We set T = 1, and
penalty weights γf,0 = 1, and γl,0 = 2 × 10−3. Denoising results
obtained using our proposed STROLLR based method are compared
with those obtained by the adaptive K-SVD denoising scheme [2],
the group low-rank approximation method (LR) [16], the square TL
denoising scheme (TL) [3], and BM3D [11], which is a state-of-the-
art image denoising method.

Table 2 lists the denoised PSNRs obtained using the aforemen-
tioned methods, with the best result for each testing case (i.e., each
row) marked in bold. The proposed STROLLR image denoising
method provides average PSNR improvements of 0.3dB, 0.2dB,
0.3dB, and 0.1dB, respectively, over the K-SVD, LR, TL, and
BM3D denoising methods. Local sparsity based methods, such as
K-SVD and TL, usually perform well for corrupted images with low
noise σ, while non-local methods, such as LR and BM3D, denoise
better when σ increases. By imposing both local (i.e., patch sparsity)
and non-local (i.e., group low-rankness) regularizers, for all testing
images and noise σ’s, STROLLR performs consistently among the
best. Thus our proposed method demonstrates robust and promising
performance in image denoising compared to popular competing
methods.

Images σ KSVD LR TL BM3D STROLLR
5 38.1 38.4 38.1 38.3 38.5

Barbara 10 34.4 35.0 34.3 35.0 35.1

15 32.3 33.1 32.1 33.1 33.2

20 30.8 31.8 30.5 31.7 31.9

5 38.6 38.6 38.6 38.7 38.8

Lena 10 35.5 35.8 35.5 35.9 35.9

15 33.7 34.2 33.7 34.3 34.3

20 32.4 33.0 32.2 33.0 33.1

5 35.7 35.6 35.8 35.8 35.9

Airport 10 32.0 32.0 32.1 32.0 32.2

15 30.2 30.3 30.2 30.2 30.4

20 29.0 29.1 29.0 29.1 29.2

5 35.2 35.1 35.2 35.3 35.3

Baboon 10 30.5 30.5 30.5 30.6 30.7

15 28.0 28.2 28.1 28.2 28.3

20 26.4 26.7 26.5 26.6 26.8

5 36.7 36.5 36.6 36.7 36.7

Face 10 33.4 33.4 33.3 33.3 33.5

15 31.9 32.0 31.8 32.0 32.0

20 31.0 31.3 30.9 31.3 31.3

5 36.1 35.9 35.9 35.9 36.1

Moon 10 32.5 32.3 32.5 32.1 32.5

15 30.9 30.6 30.9 30.6 30.9

20 30.0 29.6 29.9 29.8 30.0

5 37.3 37.2 37.2 36.7 37.4

Elaine 10 34.0 34.1 33.7 33.3 34.2

15 32.3 32.5 32.1 32.2 32.6

20 31.4 31.6 31.2 31.5 31.7

5 36.7 36.5 36.6 36.6 36.8

Sailboat 10 32.8 32.8 32.8 32.8 33.0

15 31.0 31.0 30.9 31.1 31.1

20 29.7 29.8 29.7 29.8 29.9

5 36.5 36.4 36.5 36.6 36.6

Tank 10 33.1 33.2 33.0 33.1 33.2

15 31.5 31.6 31.4 31.6 31.7

20 30.4 30.5 30.3 30.6 30.7

5 37.0 37.0 36.7 36.7 37.0

Plane 10 34.3 34.1 34.3 34.2 34.3

15 33.2 33.3 33.3 33.3 33.4

20 32.5 32.5 32.6 32.7 32.8

Average 32.9 33.0 32.8 33.1 33.2

Table 2. Comparison of image denoising PSNR values using K-
SVD, group low-rank approximation method (LR), square TL de-
noising method (TL), BM3D, and the proposed STROLLR method.
The average denoising PSNR values are calculated over all images
and all noise levels for all methods. The best PSNR value in each
row is marked in bold.
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