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ABSTRACT
Kernel fusion is a popular and effective approach for com-
bining multiple features that characterize different aspects
of data. Traditional approaches for Multiple Kernel Learning
(MKL) attempt to learn the parameters for combining the ker-
nels through sophisticated optimization procedures. In this
paper, we propose an alternative approach that creates dense
embeddings for data using the kernel similarities and adopts a
deep neural network architecture for fusing the embeddings.
In order to improve the effectiveness of this network, we
introduce the kernel dropout regularization strategy coupled
with the use of an expanded set of composition kernels. Ex-
periment results on a real-world activity recognition dataset
show that the proposed architecture is effective in fusing
kernels and achieves state-of-the-art performance.

Index Terms— Kernel fusion, Deep learning, Dropout
regularization, Activity recognition

1. INTRODUCTION

Kernel methods provide a powerful framework to extend sev-
eral machine learning formulations since they enable the de-
sign of effective non-linear models. For example in Support
Vector Machines (SVM), the problem of building binary clas-
sifiers to obtain non-linear decision boundaries can be reposed
into a dual problem in terms of the kernel similarity matrix.
Referred to as the kernel trick, this approach has been suc-
cessfully applied to a wide range of supervised and unsuper-
vised learning problems [1, 2]. A valid positive semidefinite
kernel inherently defines a lifting (transformation) to a Repro-
ducing Kernel Hilbert Space (RKHS), thereby enabling effi-
cient approximation of any function of interest in the trans-
formed space. Another important property of kernel methods
is that fusing kernels from multiple sources (e.g. different fea-
ture descriptors or sensing modalities) is straightforward. A
commonly adopted strategy is to consider a convex combina-
tion of the kernels. The process of simultaneously inferring
the weights for the convex combination and minimizing the
structural risk (SVM objective) is referred to as Multiple Ker-
nel Learning (MKL) [3, 4]. The idea is to effectively exploit
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Fig. 1: Proposed approach for multiple kernel fusion. We
use the kernel matrices to create dense embeddings for data
and fuse them in a fully connected deep network. The kernel
dropout regularization at the fusion layer and the use of dif-
ferent composition (sum) kernels improves the optimization.

the complementary nature of the different features [5] and the
representation power of different kernel functions. Despite
their wide-spread use, as pointed out by [6], MKL algorithms
may suffer when solving for global weights and the most crit-
ical support vectors, since the weight for a kernel is restricted
to be the same over the whole input space. This challenge
is alleviated by Localized MKL (LMKL) [6], which intro-
duces a gating function for each kernel. By treating the input
data sample as the independent variable, the gating function
characterizes the underlying localities in data and reduces the
number of support vectors.

Several existing approaches for feature fusion begin by
building compact and effective representations from raw data
since they help the fused result to be robust to noise and
outliers. In particular, sophisticated representation learning
paradigms such as deep learning have shown exceptional
power when dealing with complex, high-dimensional data. In
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[7], the authors focused on feature learning in different mul-
timodal settings and showed that in the multimodal fusion
case, the fused feature exploits complementary information
from each modality. In [8], Zhao et.al. built sub-networks
for each heterogeneous feature and relied on the Stacked
Denoising Autoencoders to learn high-level homogeneous
representations for feature integration. Note that, both meth-
ods start with the raw features directly and did not exploit any
use of similarity kernels. Existing works on incorporating
the advantages of deep learning into kernel methods either
develop new kernel constructions to mimic the large neural
computation [9] or apply similar neural network structure to
combine kernels and optimize at each layer [10].

In this paper, we propose to exploit the advantages of deep
architectures in feature learning to build a new approach for
multiple kernel fusion. First, we adopt a novel viewpoint
of kernels by treating the similarities encoded in the kernel
matrix as a valid embedding of the data. This is similar to
the approaches in the natural language processing literature,
wherein relevance measures such as Pointwise Mutual Infor-
mation (PMI) of a word with respect to other words in the vo-
cabulary is treated as a word embedding [11]. Since the ker-
nel matrix can be inherently sparse and low-rank, we propose
to apply a dense embedding procedure (e.g. Singular Value
Decomposition) to the columns of the kernel matrix. Conse-
quently, the problem of kernel fusion is transformed to fusing
their dense embeddings. To this end, we build a deep architec-
ture for kernel fusion, coupled with novel training strategies:
(a) to emulate the convex combination approach in MKL, we
expand the set of kernels by including combinations of dif-
ferent subsets of the base kernels, and (b) we perform ker-
nel dropout in the fusion layer for improved regularization.
The proposed architecture replaces the complex optimization
procedure in MKL by efficient representation learning and
straightforward feature merging. This makes our fusion ap-
proach easily scalable to a large number of kernels.

2. PROPOSED APPROACH

2.1. Architecture

The proposed approach considers the similarity information
encoded in a kernel as an embedding of the data, and poses
the problem of MKL as fusing these embeddings in a deep
learning architecture. In this section, we start by presenting
the general architecture and then describe strategies for im-
proving the performance.

As shown in Figure 1, the proposed architecture consists
of three components: (a) dense embeddings computation
using kernel similarities, (b) representation learning using a
deep architecture, and (c) feature fusion. Let us denote the
kernel Gram matrix as K, where Ki,j = k(xi,xj). Each
column sj of the Gram matrix encodes the relevance between
sample xj and all other samples xi and it can be treated as

an embedding for xj . This viewpoint is very similar to the
construction of dense word embeddings using the PMI in text
processing [12]. In the ideal case, sj has large values at the
samples coming from the same class with xj and zeros at
others. The sparsity in these embeddings makes them un-
suitable for inference tasks [11]. To alleviate this, we obtain
a dense embedding of the kernel similarities using Principle
Component Analysis (PCA), which projects the original ker-
nel feature to a low-dimensional space. Note that, this can
be easily replaced by other embedding techniques including
manifold learning [13], Word2Vec [14] or random projection
[15]. Besides providing dense embeddings, this step also
helps to significantly improve the network training speed.

On top of each dense feature set obtained by PCA, we
build a fully connected neural network. The goal is to use
back-propogation in a large network to learn a concise rep-
resentation which are more effective for inference tasks. To
achieve this, the size of the network needs to be adequately
large. In our application, we build a 4−layer network sepa-
rately for each embedding. At each hidden layer, dropout reg-
ularization [16] is used to prevent overfitting and batch nor-
malization [17] to accelerate training. After the representa-
tions are learned, we stack another layer which is responsible
for fusing the features and obtaining the classification result
with a softmax activation. The most straightforward approach
for the feature merging is to simply concatenate all the inputs
to the layer. However various other merge modes can be eas-
ily applied too including summation, averaging, multiplica-
tion etc. The flexibility of the merge layer facilitates a wide
range of kernel combination forms.

2.2. Using Composition Kernels

An important property of MKL is the various parameteriza-
tion forms for mixing kernels such as convex combination,
Hadamard product or mixtures of polynomials [3]. We em-
ulate this property by including all possible combinations
of base kernels (namely the composition kernels in Fig-
ure 1) to the architecture input. Given the base kernels set
{K1,K2, ...,KM}, the whole input kernel set Φ to our archi-
tecture will have size M̃ :

Φ = {K | K =

q∑
i=p

Ki,∀p, q ∈ {1, 2, 3, ...,M}, q ≥ p}

M̃ =

M∑
m=1

(
M

m

)
Simple kernel summation proves to be highly effective in
practical recognition problems and the derived representation
corresponding to the summed kernel is often very different
from either alone. Note that other formulations with base
kernels can also be used. Paired with the flexible merge and
deep feature representation, our architecture covers a large
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number of kernel combination scenarios without explicitly
formulating them.

2.3. Kernel Dropout Regularization

In dropout regularization [16] for training large neural net-
works, neurons are randomly chosen to be removed from the
network along with their incoming and outgoing connections.
The process can be viewed as sampling a large set of pos-
sible network architectures with shared weights. Given the
large kernel set Φ, a more effective regularization mechanism
is needed to prevent the network training from overfitting cer-
tain kernels. More specifically, we propose to regularize the
fusion layer by dropping the entire representations learned
from some randomly chosen kernels. Denoting the represen-
tations learned for all kernels as Φ̃ = {r1, r2, ..., rM̃} and a
vector t associated with M̃ independent Bernoulli trials, the
representation rm is dropped from the fusion layer if tm is 0.
The feed-forward operation can be expressed as:

tm ∼ Bernoulli(p)

Φ̂ = {r | r ∈ Φ̃ and tm > 0}
r̃ = (ri), ri ∈ Φ̂

zi = wir̃ + bi, yi = f(zi)

where wi are the weights for hidden unit i, (·) denotes vector
concatenation and f is the softmax activation function.

3. SYSTEM SETUP

In this section, we apply the proposed architecture to the im-
portant problem of sensor-based activity recognition. Recent
advances in activity recognition have shown promising results
in the applications of fitness monitoring and assistive living
[18]. However, problem still exists on how to effectively deal
with the measurement inaccuracy and noise. One popular ap-
proach to the problem is utilizing various features and kernels
that characterize salient aspects of the data and develop effi-
cient fusion mechanisms to combine them. In this paper, we
construct kernels which describe the statistical property, peri-
odic structure and inter-sample relations for the accelerometer
signals.

3.1. Feature Extraction and Kernel Construction

3.1.1. Statistics Kernel

Statistical features have been known to be useful for activity
recognition [19]. The features we use include mean, median,
standard deviation, kurtosis, skewness and total acceleration.
In addition, we extract the mean-crossing rate and dominant
frequency to capture the frequency-domain information. We
construct a Gaussian kernel and the best γ parameter is deter-
mined by cross validation on the training set.

3.1.2. Shape Kernel

In lieu of building conventional state-space models, Time De-
lay Embeddings (TDE) provide an effective way to recon-
struct the underlying dynamical system from the observed
data. Given a time-series data, the phase space is the set of
states which contain all the necessary information to predict
the future of the system [20]. The TDEs of a time-series
data x can be defined in matrix form O whose ith column
is ot = [xt, xt+τ , xt+2τ , ..., xt+(n−1)τ ].

The n time-delayed observation samples can be consid-
ered as points in Rn, which is referred to as the delay em-
bedding space. In our application, the delay parameter τ is
fixed to 10 and embedding dimension n to 8. Following the
approach in [20], we use PCA to project the embedding to 3-
D for noise reduction. We extract a simple shape function
based on the geometric distances, and use it to derive our
feature. The shape function we consider measures the pair-
wise distances between samples in the TDE space, calculated
as Sij = ‖oi − oj‖2 [21]. A histogram is calculated us-
ing these distances with a pre-specified bin size to build the
feature. Following this, we construct an intersection kernel
k(h,h′) =

∑
i min(hi, h

′
i) [22], where h,h′ are the com-

puted histograms.

3.1.3. Correlation Kernel

Correlation measures the dependence between two time-
series signals and has been widely used in electroencephalo-
gram (EEG) signal analysis. We calculate the absolute
value of Pearson correlation coefficient. To account for
shift between the two signals, the maximum absolute co-
efficient for a range of shift values is identified. The cor-
relation matrix R defined in this way does not guarantee
the required positive semi-definite condition of kernel. To
correct this, we remove the negative eigenvalues from the
matrix. Given the eigen-decomposition of the correlation
matrix R = QΛQT , where Λ = diag(λ1, λ2, ..., λn) and
λ1 ≥ λ2 ≥ ... ≥ λr ≥ 0 ≥ λr+1 ≥ ... ≥ λn, the
correlation kernel is constructed as K = QΛ̂QT , where
Λ̂ = diag(λ1, λ2, ..., λr, 0, ..., 0).

3.2. Dataset

The dataset used in our experiments is obtained from [23]
and corresponds to 12 different daily activities for 14 sub-
jects. Each activity is repeated in 5 trials for each subject.
The 3-axis accelerometer measurements were obtained at
a sampling rate of 100Hz. We consider 5 seconds of non-
overlapping frames and as a result there are 5353 frames. In
our experiment, 80% randomly chosen samples were used for
training and the rest for testing. Putting together the 3 base
kernels described in Section 3.1 with the combination kernels
(K1 + K2, K1 + K3 etc.) makes the total number of input
kernels for our architecture to 7.
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Fig. 2: Convergence behavior of the proposed method.

Fig. 3: Confusion matrix based on the classification result.

4. PERFORMANCE EVALUATION AND
CONCLUSION

The proposed approach is tested on the described activity
recognition dataset. In the dense embedding stage, the di-
mension of the kernel feature is reduced to 500. The 4-layer
neural network for representation learning has size 256-1024-
512-64. At each hidden layer the dropout rate is fixed at 0.5.
In the fusion layer, the kernel dropout rate is set to 0.6. We
use Keras library with TensorFlow backend to build and
perform optimization for the architecture.

The training convergence curve shown in Figure 2 demon-
strates that the architecture is able to reduce the loss value and
achieve convergence quickly. We report the classification per-
formance in Table 1. In our case, the accuracy is defined as
the averaged fraction of correctly predicted labels among all
classes. We make comparison of our proposed architecture to
other 3 setups: (1) single kernel performance, which is ob-
tained without the fusion layer, (2) different deep architecture
settings, and (3) existing MKL methods.

First, we observe that all 3 kernels achieve accuracies in a
similar range, while the fusion of them provides a significant
improvement. In the best case, the improvement is over 10%
compared to the best of a single kernel. Second, we com-
pare each of the proposed training strategies to the standard
deep architecture feature fusion (by simple concatenation of

Table 1: Classification Performance Comparison

Input Kernel Accuracy (%)
Statistics 79.3

Shape 73.3
Correlation 75.3

Architecture Accuracy (%)
(a): Standard Feature Fusion 82.3
(b): (a) + Dense Embedding 86.6

(c): (b) + Composition Kernels 88.1
MKL Method Accuracy (%)
UNIFORM 88.5

SMO-MKL [24] N/A
SwMKL [25] 88.5

Proposed: (c) + Kernel Dropout 90.2

learned representations). Dense embedding gives around 4%
improvement. This demonstrates the necessity of this pre-
processing stage when treating kernel values as embeddings.
The inclusion of composition kernels and kernel dropout reg-
ularization each provides further improvements. Although the
improvement is not tremendous in this case, it is significant.
We argue that each step is beneficial and expect much more
usefulness of them in more complex problems when a large
number of descriptors and kernels are needed. From the vi-
sualization of confusion matrix in Figure 3, we can see the
overall classification model is highly effective to this problem
and most of the confusion happens only between very related
activities (e.g. elevator up versus elevator down).

We compare our approach to MKL methods including
combination with uniform weights (denoted as UNIFORM), a
popular MKL algorithm SMO-MKL [24] and a recent LMKL
approach SwMKL [25]. UNIFORM provides a decent perfor-
mance and this justifies our utilization of the composition
kernels. SMO-MKL applies to binary classification natively
and as pointed out by [26], the extension to multi-class clas-
sification is not trivial. We find this to be true for many
existing MKL formulations. SwMKL relies on a regression
method to learn the gating function which characterizes the
discriminative capabilities of kernels on local data regions.
However, in our case each base kernel classifies training data
fairly well, causing a highly imbalanced regression problem.
This prevents the Support Vector Regressor from obtaining
a meaningful gating function, thereby resulting in a perfor-
mance similar to that of UNIFORM fusion. The proposed
approach achieves the best performance. What is more im-
portant is that the architecture provides a reliable way of
fusing kernels in a multi-class setting using widely available
computational backends for generic neural networks. The
architecture is also general so that more advanced techniques
can be easily incorporated at certain stages.

2295



5. REFERENCES

[1] H. Song, J. J. Thiagarajan, K. N. Ramamurthy, and
A. Spanias, “Auto-context modeling using multiple ker-
nel learning,” in IEEE ICIP, Phoenix, Sept. 2016, IEEE,
pp. 1868–1872.

[2] J. J Thiagarajan, K. N. Ramamurthy, D. Rajan,
A. Spanias, A. Puri, and D. Frakes, “Kernel sparse mod-
els for automated tumor segmentation,” International
Journal on Artificial Intelligence Tools, vol. 23, no. 03,
pp. 1460004, 2014.

[3] A. Jain, S. VN Vishwanathan, and M. Varma, “Spg-
gmkl: generalized multiple kernel learning with a mil-
lion kernels,” in 18th KDD. ACM, 2012, pp. 750–758.

[4] J. J Thiagarajan, K. N. Ramamurthy, and A. Spanias,
“Multiple kernel sparse representations for supervised
and unsupervised learning,” IEEE Trans. on Image Pro-
cessing, vol. 23, no. 7, pp. 2905–2915, 2014.

[5] J. J Thiagarajan, K. N. Ramamurthy, and A. Spanias,
“Learning stable multilevel dictionaries for sparse rep-
resentations,” IEEE Trans. on Neural Networks and
Learning Systems, vol. 26, no. 9, pp. 1913–1926, 2015.

[6] M. Gönen and E. Alpaydın, “Localized multiple ker-
nel learning,” in Proceedings of the 25th ICML. ACM,
2008, pp. 352–359.

[7] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and
A. Ng, “Multimodal deep learning,” in Proceedings
of the 28th ICML, 2011, pp. 689–696.

[8] L. Zhao, Q. Hu, and Y. Zhou, “Heterogeneous features
integration via semi-supervised multi-modal deep net-
works,” in International Conference on Neural Infor-
mation Processing. Springer, 2015, pp. 11–19.

[9] Y. Cho and L. K. Saul, “Kernel methods for deep learn-
ing,” in Advances in neural information processing sys-
tems, 2009, pp. 342–350.

[10] E. V. Strobl and S. Visweswaran, “Deep multiple kernel
learning,” in 12th ICMLA. IEEE, 2013, vol. 1, pp. 414–
417.

[11] O. Levy and Y. Goldberg, “Neural word embedding as
implicit matrix factorization,” in Advances in neural in-
formation processing systems, 2014, pp. 2177–2185.

[12] G. Bouma, “Normalized (pointwise) mutual informa-
tion in collocation extraction,” Proceedings of GSCL,
pp. 31–40, 2009.

[13] A. Elgammal and C. Lee, “Inferring 3d body pose from
silhouettes using activity manifold learning,” in IEEE
Conference on CVPR. IEEE, 2004, vol. 2, pp. II–681.

[14] T. Mikolov and J. Dean, “Distributed representations
of words and phrases and their compositionality,” Ad-
vances in neural information processing systems, 2013.

[15] E. Bingham and H. Mannila, “Random projection in
dimensionality reduction: applications to image and text
data,” in 7th KDD. ACM, 2001, pp. 245–250.

[16] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: a simple way to pre-
vent neural networks from overfitting.,” Journal of Ma-
chine Learning Research, vol. 15, no. 1, pp. 1929–1958,
2014.

[17] S. Ioffe and C. Szegedy, “Batch normalization: Acceler-
ating deep network training by reducing internal covari-
ate shift,” arXiv preprint arXiv:1502.03167, 2015.

[18] H. Song, J. J. Thiagarajan, K. N. Ramamurthy,
A. Spanias, and P. Turaga, “Consensus inference on
mobile phone sensors for activity recognition,” in IEEE
ICASSP, Shanghai, March 2016, IEEE, pp. 2294–2298.

[19] M. Zhang and A. A. Sawchuk, “Human daily activity
recognition with sparse representation using wearable
sensors,” IEEE journal of Biomedical and Health In-
formatics, vol. 17, no. 3, pp. 553–560, 2013.

[20] J. Frank, S. Mannor, and D. Precup, “Activity and gait
recognition with time-delay embeddings.,” in AAAI.
Citeseer, 2010.

[21] V. Venkataraman and P. Turaga, “Shape descriptions
of nonlinear dynamical systems for video-based infer-
ence,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. PP, no. 99, pp. 1–1, 2016.

[22] S. Maji, A. C. Berg, and J. Malik, “Classification using
intersection kernel support vector machines is efficient,”
in IEEE Conference on CVPR. IEEE, 2008, pp. 1–8.

[23] M. Zhang and A. A. Sawchuk, “Usc-had: a daily ac-
tivity dataset for ubiquitous activity recognition using
wearable sensors,” in Proceedings of the ACM Confer-
ence on Ubiquitous Computing. ACM, 2012, pp. 1036–
1043.

[24] Z. Sun, N. Ampornpunt, M. Varma, and S. Vish-
wanathan, “Multiple kernel learning and the smo al-
gorithm,” in Advances in neural information processing
systems, 2010, pp. 2361–2369.

[25] R. Kannao and P. Guha, “TV commercial detection us-
ing success based locally weighted kernel combination,”
in MultiMedia Modeling. Springer, 2016, pp. 793–805.

[26] A. Zien and C. S. Ong, “Multiclass multiple kernel
learning,” in Proceedings of the 24th ICML. ACM,
2007, pp. 1191–1198.

2296


