
TRAINING VARIANCE AND PERFORMANCE EVALUATION OF NEURAL NETWORKS IN
SPEECH

Ewout van den Berg, Bhuvana Ramabhadran, Michael Picheny

IBM Watson Group
1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA

ABSTRACT

In this work we study variance in the results of neural net-
work training on a wide variety of configurations in auto-
matic speech recognition. Although this variance itself is
well known, this is, to the best of our knowledge, the first
paper that performs an extensive empirical study on its ef-
fects in speech recognition. We view training as sampling
from a distribution and show that these distributions can have
a substantial variance. These results show the urgent need to
rethink the way in which results in the literature are reported
and interpreted.

Index Terms: neural network training, performance evalua-
tion

1. INTRODUCTION

In automatic speech recognition (ASR), the goal is to develop
a combination of language and acoustic models that together
minimize the decoding word-error rate (WER) on predefined
tasks. Early work on the application of deep learning for ASR
showed tremendous improvement of up to 33% relative to ex-
isting GMM-HMM models [1]. Results like these led to a
proliferation of research on various deep neural network ar-
chitectures along with new training methods, alternative fea-
ture representations, and ways to improve data augmentation.
The performance of newly proposed approaches is typically
evaluated by comparing the results against the performance of
a baseline system. Even after extensive tuning of the hyper-
parameters of the new system, modest relative improvements
of around 5% are now much more common. In this work we
look at the well-known but widely-ignored issue of variance
in neural network training and its implications on evaluating
new methods. In Section 2 we look at neural network training
as sampling from a distribution and in Section 3 we perform
extensive experiments that empirically show what these dis-
tributions look like for practical ASR tasks. In Section 4 we
discuss the implications on the evaluation of new methodolo-
gies, and conclude in Section 5.

2. NEURAL NETWORK TRAINING AS SAMPLING

For the vast majority of conventional neural networks, train-
ing involves minimizing a cost function that is highly non-
convex. Given that optimization is done with techniques that
were designed for convex problems, such as stochastic gra-
dient descent (SGD), it should come as no surprise that the
solution of a training run depends on the initial starting point,
as well as various factors that affect the optimization pro-
cess, such as the mini-batch randomization (see also [2, 3, 4]).
This phenomenon is common knowledge to many practition-
ers, and indeed it was leveraged in work by [5] to generate
model ensembles. However, it is otherwise rarely discussed
explicitly in the literature

Training algorithms are generally deterministic given
the initial state of the network and the order of the training
data (we exclude asynchronous algorithms, in which the ex-
act timing and communication network load may affect the
outcome). The initial state and order in turn are often de-
terministic given the state s of the pseudo-random number
generator (PRNG). Denoting by θ the model setup, includ-
ing the network architecture, network parameters, training
algorithm, and hyper parameters, we can interpret training as
evaluating the function M(θ, s), mapping the training setup
and PRNG state to a trained model. When the state of the ran-
dom number generator is not explicitly controlled, s can be
viewed as a hidden random variable s ∼ S , turning M(θ, s)
into a distribution M(θ). Training a network then changes
from evaluating a function to drawing a sample m ∼M(θ).

3. NUMERICAL EXPERIMENTS

3.1. Experiment setup

For the training and evaluation of the systems we use three
datasets. The first two datasets are based on the English
Broadcast News (BN) training corpus [6] which we pre-
process to obtain 40-dimensional logmel features with speaker-
dependent mel filters chosen from a set of 21 possible filters.
The first dataset (BN400) contains the complete 400-hour
BN training set and a 30-hour hold-out set. The second
dataset (BN50) limits the data to a 45-hour training set and

2287978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



a 5-hour hold out set [7]. For evaluation we use EARS Dev-
04f, as described by [7]. The third dataset is based on the
300h Switchboard corpus [8, 9] and uses 40-dimensional
speaker-independent logmel features. Evaluation is done on
the Hub5-2000 and CallHome corpora [10]. For all decodes
we use the trigram language model (LM) described in [7].

For the acoustic model we consider both DNN and CNN
architectures, each with a softmax output layer mapping to
5999 tri-phone states for BN and 9300 tri-phone states for
Switchboard. The DNN has an input layer that takes the log-
mel features with ±4 temporal context for BN and ±5 for
SWB. This input is then transformed through five hidden lin-
ear layers, each with a sigmoid activation function and an
output dimension of 1024 for BN and 2048 for SWB, before
reaching a softmax output layer. The CNN consists of two
convolution layers (with max pooling and respectively 128
filters of size 9×9×3 and 25 of size 3×4×128), two hidden
linear layers with sigmoid activation of size 1024, and a final
output layer. The input features are logmel with ±4 frames
context and ∆ and ∆2 information.

Most of the training is done by minimizing a cross-
entropy loss function using SGD in combination with the
newbob schedule: we restore the network weights to the pre-
vious epoch and halve the learning rate whenever the held-out
loss decrease is insufficient. For the DNN we use layerwise
pre-training, each for one epoch [11]. For the BN50-DNN
task we also use Hessian-free sequence training [7, 12, 13].

3.2. Results

In the first experiment we study the empirical distribution of
cross entropy values evaluated on the hold-out set by train-
ing 50 DNN networks for the BN50 task with different ran-
dom seeds for the initial network parameters, while fixing the
order of the mini batches. The results with initial learning
rates 0.007 and 0.008 are plotted in Figures 1(a,b) as both his-
tograms and kernel density estimates using a Gaussian kernel
(solid line). The difference in learning rate is not very large
and the distributions are fairly similar. For the next experi-
ment we fix the random initial network parameters, and then
vary the random seed used for the batch randomization. The
distribution for learning rate of 0.008, shown in Figure 1(c),
is tightly concentrated around its mean with the exception of
one outlier. Next, we randomize both the initial parameters as
well as the data order, while keeping the initial learning rate at
0.008. The results in Figure 1(d) show that the standard devi-
ation grows and exceeds the sum of those in Figures 1(b) and
(c). From the kernel density estimates in Figure 1 it is clear
just how localized the distribution of cross entropy values is
when keeping the data order fixed and changing only the ini-
tial network parameters. This suggests that the data order is
more important than the initial parameters in determining the
final result. More experiments are needed to see if this applies
only for this task, or whether it holds more generally.

As mentioned in the introduction, the goal of ASR is to
obtain a small word-error rate. In addition to the acoustic
model, the word-error rate also depends on the decoder set-
tings, the language model, and the relative weights of the lan-
guage and acoustic models for computing likelihoods. In Fig-
ure 1(f) we plot the word-error rates for the above four set-
tings against the cross-entropy. While the two are somewhat
correlated, it does not hold that models with a lower cross
entropy necessarily have a word-error rate as well. We also
trained 50 instances of the BN400 DNN task with varying
initial parameters and data orders. The results of these exper-
iments appear in the bottom left corner of the figure. Finally,
we trained 50 CNN instances on BN50, again with different
initial parameters and data order. Even though the cross en-
tropy is closer to the values obtained with the BN400 DNNs,
the word-error rate only seems to improve marginally over
the BN50 DNNs, thereby clearly showing the discrepancy be-
tween the training objective and the evaluation metric. To see
how the performance of the models changes with different
evaluation sets and language models, we plot in Figure 1(g)
the results of three different decodes against the results from
the BN50 DNN trained with learning rate 0.008, standard lan-
guage model and evaluated on Dev04f. Overall the relative
model accuracy roughly remain the same across evaluation
sets and language models. In all three settings the best mod-
els remains the best and likewise for the worst model.

In Figures 2(a)–(d) we plot the empirical distribution
of the WER for the four BN50 DNN experiments given in
Figure 1(e). The blue histogram and kernel density estima-
tion summarize the results obtained when using the optimal
weight on the acoustic model relative to the language model.
The dashed purple line shows the distribution that results
when changing the acoustic weight to a sub-optimal value.
The mean and standard deviation in WER values for the dif-
ferent setups reflect the relative values of the cross entropy
values in Figures 1(a)–(d). The largest WER range of 15.6
to 17.1 is obtained when both the initial parameters and data
order vary. Among the BN50 configurations tried, the results
for the BN50 CNN setup in Figure 2(e) have the smallest
mean and minimum WER. In addition, the standard deviation
is small compared to the equivalent DNN in Figure 2(d).

Increasing the amount of training data gives a large reduc-
tion in WER with the average going down from 16.1 to 13.98,
as shown in Figure 2(e). The difference between the best and
worst WER remains around 1.3 percent absolute, but the ratio
between the standard deviation and the mean remains nearly
the same being only slightly higher for the BN400 setup. Fig-
ures 2(g) and (h) give the distribution of WER for the 300-
hour Switchboard system evaluated on the Hub5 and Call-
Home datasets. The standard deviation on these experiments
is smaller than those for the Broadcast News experiments.

So far we have only considered experiments based on
cross-entropy minimization using SGD. The best results in
speech, see for example [10], are obtained using sequence-
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Fig. 1. Distribution of the cross-entropy values after 30 epochs of SGD training for 50 different DNNs instances using the BN50
dataset with (a,b) varying mini-batch order and fixed initial network parameters for learning rates 0.007 and 0.008; (c) varying
initial parameters and fixed mini-batch order, learning rate 0.008; (d) varying data order and parameters for learning rate 0.008;
(e) a summary of the curves in plots (a)–(d); and (f) word-error rates plotted against the cross entropy for each of these systems
as well as those for experiments on BN50 CNN and BN400 DNN. (g) The word-error rates depend on the language model
and evaluation set: (top) standard LM, evaluated on RT-04, (middle) standard LM, Dev-04f, and (bottom) large LM, Dev-04f.
Results are plotted against the WER results in the middle. Plot (h) gives the results obtained with sequence training.

level discriminative training techniques. For our experiments
we minimize the state-based minimum Bayes risk (MBR)
objective [7, 13] using Hessian-free optimization [12]. For
this we took ten networks from the BN50 DNN setup in
which both the data order and initial network parameters
change and denote them by n1 through n10 in decreasing
order of performance. For each of these networks we gener-
ated the corresponding enumerator and denominator lattices
`1 through `10 using a unigram language model. We then ap-
plied sequence training to three settings: (1) Initial network
nk and lattices `k; (2) initial network nk and fixed lattice `1;
and (3) fixed initial network n1 and lattices `k. The resulting
WERs are plotted in Figure 1(h) and connected by lines for
clarity. All sequence-training results improve substantially
over the cross-entropy results. It seems that the starting point
is much more important than the network quality used to
generate the lattices; initializing the network parameters with
those of the best BN50 DNN cross-entropy system gives the
best results among the three setups.

4. DISCUSSION

When evaluating the performance of a new method there are
two aspects that need to be taken into consideration. The first
one concerns the statistical significance of results obtained
for individual models. This includes techniques such as Mc-
Nemar’s and matched-pair tests, as advocated in [14]. The

second aspects goes beyond individual models and concerns
the performance of methods as a whole. Currently, meth-
ods are evaluated by comparing with a baseline the very best
model obtained after careful and often extensive fine tuning.
The baseline may itself be a highly refined result reported
in the literature, but equally often consist of a single run of
a standard DNN or CNN system. Aside from the question
of whether the two models are significantly different is the
more important question of how meaningful it is to compare
competing methods based on only one pair of models per
dataset. As a though experiment, consider the situation where
we compare the performance of the BN50 DNN from Fig-
ure 2(a) against itself. In particular, we consider the distribu-
tion in Figure 2(a) and compute the probability that, based on
a matched-pair test with given confidence level, at least one
of n randomly sampled models is significantly better than a
randomly sampled baseline. This gives:

Conf. n = 1 n = 2 n = 5 n = 10 n = 20
95.0% 35.0 54.7 81.9 95.1 99.5
99.0% 22.2 36.6 61.3 79.3 92.0
99.9% 11.3 19.7 36.4 51.7 66.8

With sufficient sampling there is a high probability of find-
ing a model that improves significantly over the baseline, and
we would therefore conclude that the method improves upon
itself! In practice a similar setting may arise when a high de-
gree of fine tuning amounts not so much to finding the optimal
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Fig. 2. Result obtained for different datasets and neural network types, as indicated next to the labels. Plots (a)–(d) show the
results for BN50 DNN setups; (e) gives the results for the BN50 CNN system with varying data order (do) and initial network
parameters; (f) gives similar result for a BN400 DNN setup; (g,h) plot the results for the 300h switchboard DNN system when
evaluated respectively on the Hub5 and CallHome datasets. The underlying acoustic for these two are the same and each of the
50 instances is trained with different random seeds for the data order and the initial network parameters.

parameters but rather to sampling repeatedly from similar dis-
tributions, thereby increasing the chance of eventually finding
a good model instance. We see that even if a model obtained
with a proposed method is significantly better than the base-
line, it does not automatically allow us to conclude that the
method as a whole is better than that used for the baseline.

When the training distribution of two methods were
known (either based on an optimal set of hyperparameters, or
on some distribution over these parameters) we could look at
principled ways of comparing the performance. We could for
example: (1) Compare the best possible results; this provides
a best-case scenario and provided that the baseline comes
from a highly tuned system, this is what is commonly used.
Note that this approach is biased in favor of the proposed
method if the baseline is not extensively tuned/sampled (as
illustrated above). (2) Compare the mean results; this says
something about the performance of an average training run;
(3) Determine the probability that a randomly sampled mod-
els of one method is better than that the other.

Of course, the entire distribution is not known and even
obtaining a good approximation may require excessive sam-
pling. For a comparison methodology to be practicable we
require that it can be evaluated based on only a small number
of samples, which is even more challenging if the underlying
distribution is non-parametric. The performance of the first
approach really depends on the probability mass contained in
the lower tail; if this is small it will be very difficult to sam-
ple. Care needs to be taken when comparing the mean. When
they are similar, then in terms of method performance it may

be desirable to have a stable method with little variance. On
the other hand, when it comes to obtaining a model for prac-
tical use, a larger variance will make it easier to sample the
best model (here the goal really is to obtain the best possible
model instance). For the third example criterion, we could
sample pairs of models and apply a pairwise test and assign 1
for a win, 1/2 for a draw, and 0 for losing. The sum of these
values gives the relative performance of the methods, which
can be quantified by testing against a binomial distribution
with suitable p values. Alternatively, a pairwise test over the
results for each method combined could be done.

5. CONCLUSIONS

In the literature it is still common practice to report results
without any information on the variance; see for example
[15, 16, 17, 18]. Some notable exceptions [19, 20] do give
variance information but only on phone-error rate and not
WER. The improvements in the above papers may very well
be meaningful and represent a significant improvement on the
baseline method, but based on individual numbers alone we
simple cannot be sure. There is admittedly some additional
difficulty in systems that rely on a large number of training
stages. The sequence training setup discussed in the previous
section is a simple example, but much more involved pro-
cessing approaches in which each step is highly tuned exist
[10]. Nevertheless, more insight into the result distributions
for different settings and algorithms, and their incorporation
into performance evaluation is much needed.
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