
LEARNING TO INVERT:
SIGNAL RECOVERY VIA DEEP CONVOLUTIONAL NETWORKS

Ali Mousavi and Richard G. Baraniuk

Department of Electrical and Computer Engineering
Rice University

Houston, TX 77005

ABSTRACT

The promise of compressive sensing (CS) has been off-
set by two significant challenges. First, real-world data is
not exactly sparse in a fixed basis. Second, current high-
performance recovery algorithms are slow to converge, which
limits CS to either non-real-time applications or scenarios
where massive back-end computing is available. In this pa-
per, we attack both of these challenges head-on by developing
a new signal recovery framework we call DeepInverse that
learns the inverse transformation from measurement vectors
to signals using a deep convolutional network. When trained
on a set of representative images, the network learns both a
representation for the signals (addressing challenge one) and
an inverse map approximating a greedy or convex recovery
algorithm (addressing challenge two). Our experiments indi-
cate that the DeepInverse network closely approximates the
solution produced by state-of-the-art CS recovery algorithms
yet is hundreds of times faster in run time. The tradeoff for
the ultrafast run time is a computationally intensive, off-line
training procedure typical to deep networks. However, the
training needs to be completed only once, which makes the
approach attractive for a host of sparse recovery problems.

Index Terms— Deep Learning, Compressive Sensing,
Convolutional Neural Networks

1. INTRODUCTION

An inverse problem that has many important applications is
recovering x ∈ RN from a set of undersampled linear mea-
surements y = Φx ∈ RM , where Φ is an M × N mea-
surement matrix and M � N . This problem is ill-posed in
general and hence, in order to successfully recover the origi-
nal signal x, it should have some type of structure such that
its dimensionality can be reduced without losing information.

Compressive sensing (CS) [1–3] is a special case of this
problem in which the signal has a sparse representation, i.e.,
there exists an N × N basis matrix Ψ = [ψ1|ψ2| . . . |ψN]
such that x = Ψs and only K � N of the coefficients s are

Email: {ali.mousavi, richb} @rice.edu

nonzero. Recovering the signal x from the measurements y
is effected by a sparsity-regularized convex optimization or
greedy algorithm [4–6].

The promise of CS has been offset by two significant chal-
lenges. The first challenge is that real-world data is not ex-
actly sparse in a fixed basis. Some work has been pursued on
learning data-dependent dictionaries to sparsify signals [7–9],
but the redundancy of the resulting approaches degrades re-
covery performance. The second challenge is that current
high-performance recovery algorithms (e.g., [10]) are slow to
converge, which limits CS to either non-real-time applications
or scenarios where massive back-end computing is available.

In this paper, we attack both of these challenges head-
on by developing a new signal recovery framework we call
DeepInverse that learns the inverse transformation from mea-
surement vectors y to signals x using a deep convolutional
network. When trained on a set of representative images, the
network learns both a representation for the signals x (ad-
dressing challenge one) and an inverse map approximating a
greedy or convex recovery algorithm (addressing challenge
two).

Our experiments below indicate that the DeepInverse net-
work closely approximates the solution produced by state-of-
the-art CS recovery algorithms yet is hundreds of times faster
in run time. The tradeoff for the ultrafast run time is a com-
putationally intensive, off-line training procedure typical to
deep networks. However, the training needs to be completed
only once, which makes the approach attractive for a host of
sparse recovery problems.

2. PRIOR WORK

The first paper to study the problem of structured signal re-
covery from a set of undersampled measurements using a
deep learning approach was [11]. This work employed a
stacked denoising autoencoder (SDA) as an unsupervised
feature learner. The main drawback of the SDA approach
is that its network consists of fully-connected layers, mean-
ing that all units in two consecutive layers are connected
to each other. Thus, as the signal size grows, so does the
network. This imposes a large computational complexity on

2272978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

the training (backpropagation) algorithm and can also lead to
overfitting. The solution to this issue that was implemented
in [11] is to divide the signal into smaller non-overlapping
or overlapping blocks and then sense/reconstruct each block
separately. While such an approach deals with the curse of
dimensionality, a blocky measurement matrix Φ is unrealistic
in many applications.

The above work was followed by [12], who used a fully-
connected layer along with convolutional neural networks
(CNNs) to recover signals from compressive measurements.
Their approach also used a blocky measurement matrix Φ.

In contrast to both [11] and [12], DeepInverse works with
arbitrary (and not just blocky) measurement matrices Φ.

3. DEEP CONVOLUTIONAL NETWORKS PRIMER

Deep Convolutional Networks (DCNs) consist of three ma-
jor layers: first, convolutional layer that is the core of these
networks. This layer consists of a set of learnable filters with
a limited receptive field that are replicated across the entire
visual field and form feature maps. Second, ReLU nonlinear-
ity layer that causes nonlinearity in decision function of the
overall network. Third, pooling layer that is a form of down-
sampling and provides translation invariance. Backpropaga-
tion algorithm is used to train the whole network and fine tune
filters of convolutional layers. All three layers play important
roles in DCNs’ primary application which is image classifica-
tion. In other words, in DCNs one reduces dimensionality of
a given image by a series of convolutional and pooling layers
in order to extract the label of that image. Authors in [13]
have introduced a probabilistic framework that provides in-
sights into the success of DCNs in image classification task.

DCNs have two distinctive features that make them
uniquely applicable to sparse recovery problems. First, sparse
connectivity of neurons. Second, having shared weights
across the entire receptive fields of one layer which increases
learning speed comparing to fully-connected networks.

4. CONVOLUTIONAL NETWORKS FOR
SIGNAL RECOVERY

We now develop our new DeepInverse signal recovery frame-
work that learns the inverse transformation from measure-
ment vectors y to signals x using a special DCN. When
trained on a set of representative images, the network learns
both a representation for the signals x and an inverse map
approximating a greedy or convex recovery algorithm.

DeepInverse takes an input (set of measurements y) in
RM and produces an output (signal estimate x̂) in RN , where
typically M < N . Accomplishing this dimensionality in-
crease requires several modifications to the conventional
DCN architecture. (See Fig. 1.) First, to boost the dimen-
sionality of the input from RM to RN , we employ a fully
connected linear layer. While, in general, one could learn

the weights in this layer, in this paper, we set the weights to
implement the adjoint operator Φᵀ. Second, to preserve the
dimensionality of the processing in RN , we dispense with the
downsampling max-pooling operations.

As in the usual CS paradigm, we assume that the mea-
surement matrix Φ is fixed. Therefore, each yi (1 ≤ i ≤ M)
is a linear combination of xjs (1 ≤ j ≤ N). The training set
Dtrain = {(y(1),x(1)), (y(2),x(2)), . . . , (y(l),
x(l))} consists of l pairs of signals and their corresponding
measurements. Similarly, test setDtest = {(y(1),x(1)), (y(2),
x(2)), . . . , (y(s),x(s))} consists of s pairs including original
signals and their corresponding measurements. By training a
DCN, we learn a nonlinear mapping from a signal proxy x̃ to
its original signal x.

In the experiments described below, we use one fixed fully
connected layer (to implement Φᵀ) and three convolutional
layers. As in a DCN, each convolutional layer applies a ReLU
nonlinearity to its output.

A few details are in order. We denote signal proxy by x̃
where x̃ = Φᵀy We assume that x̃ is n1 × n2 (where n1 ×
n2 = N). Then the (i, j)-th entry of the k-th feature map in
the first convolutional layer receives x̃ as its input; its output
is given by

(xc1)ki,j = S(ReLU((Wk
1 ∗ x̃)i,j + (bk

1)i,j)), (1)

where Wk
1 ∈ Rk1×k2 and bk

1 ∈ Rn1+k1−1×n2+k2−1 denote
the filter and bias values corresponding to the k-th feature
map of the first layer and ReLU(x) = max(0, x). Finally,
the subsampling operator S(·) takes the output of ReLU(·)
to the original signal size by ignoring the borders created by
zero-padding the input.

The feature maps of the second and third convolu-
tional layers are developed in a similar manner. While
the filter shapes and and biases could be different in the
second and third layers of the network, the principles in
these layers are the same as first layer. Let `1, `2, and
`3 denote the number of filters in the first, second, and
third layers, respectively. If we denote the output of this
convolutional network by x̂ and its set of parameters by
Ω =

{
{Wk

1 ,b
k
1}
`1
k=1, {Wk

2 ,b
k
2}
`2
k=1, {Wk

3 ,b
k
3}
`3
k=1

}
, then

we can define a nonlinear mapping from the measurements to
original signal as x̂ =M(y,Ω).

Using the mean squared error (MSE) as a loss func-
tion over the training data Dtrain defined as L(Ω) =
1
l

∑l
i=1 ‖M(y(i),Ω)− x(i)‖22, we can employ backpropaga-

tion [14] in order to minimize L(Ω) and learn the parameters.

5. EXPERIMENTAL RESULTS

In this section we describe the implementation of DeepInverse
and compare its performance to several other state-of-the-art
CS recovery algorithms.

2273

Fig. 1: DeepInverse learns the inverse transformation from measurement vectors y to signals x using a special deep convolu-
tional network.

As we mentioned earlier, one of the main goals of this
paper is to show that we can use deep learning framework
to recover images from undersampled measurements without
any need to divide images into small blocks and recover each
block separately. For this purpose, we use DeepInverse that
receives a signal proxy, i.e., x̃ = Φᵀy (with same dimension
as x) as its input. In addition, it has 3 layers with the follow-
ing specifications. The first layer has 64 filters, each having
1 channel of size 11 × 11. The second layer has 32 filters,
each having 64 channels of size 11 × 11. The third layer has
1 filter with 32 channels of size 11× 11. We trained DeepIn-
verse using 64× 64 cropped subimages of the natural images
in the ImageNet dataset [15]. Test images were drawn from
ImageNet images that were not used for training purposes.

Figure 2 shows the plot of average probability of success-
ful recovery for different undersampling ratios (M/N) and
three different recovery algorithms: D-AMP [10], total vari-
ation (TV) minimization [16], and P-AMP [17]. Note that
we do not include any results from [11, 12] in our simula-
tion results, since these approaches are specifically designed
for block-based recovery whereas in this paper we focus on
recovering signals without subdivision.

Figure 2 compares the probability of successful recovery
as measured by 2000 Monte Carlo samples. For each under-
sampling ratio and Monte Carlo sample, we define the success
variable φδ,j = I

(
‖x̂(j)−x(j)‖22
‖x(j)‖22

≤ 0.1
)

. For small values of
undersampling ratio (e.g., 0.01) DeepInverse has better per-
formance than state-of-the-art recovery methods. However,
as the undersampling ratio increases, D-AMP outperforms
DeepInverse. Although Figure 2 shows that for every under-
sampling ratio one method works better than others, there is
not a clear winner in terms of reconstruction quality.

Figure 3 compares the average PSNR 1 of the Monte
Carlo test samples for different undersampling ratios and al-
gorithms. Figure 4 shows the histograms of the PSNRs of
the recovered test images, indicating the DeepInverse outper-
forms D-AMP for some images in the test set.

1PSNR = 10. log10

(
max2Image

MSE

)

While Figs. 2 and 3 indicate that DeepInverse offers re-
covery probability and PSNR performance that is comparable
to state-of-the-art CS recovery algorithms, Table 1 shows that
DeepInverse has a run time that is a tiny fraction of current
algorithms. This fact makes DeepInverse especially suitable
for applications that need low-latency recovery.

Table 2 plots the images recovered by DeepInverse and
D-AMP when they are on their best and worst behavior.

Table 3 shows the effect of adding input noise on recov-
ery performance of D-AMP and DeepInverse. We can see that
for undersampling ratio of 0.1 and 20 dB input noise, Deep-
Inverse is more robust to noise comparing to D-AMP.

Finally, Figure 5 shows the convergence of the back-
propagation training algorithm over different iterations for
DeepInverse. It also shows the average PSNR of the images
in the test dataset for different methods with M/N = 0.1.
We can see that after several iterations DeepInverse starts to
outperform TV minimization and P-AMP.

Although D-AMP has better performance than a 3-layer
DeepInverse in general, we should consider two points. First,
by training an DeepInverse with more layers the network will
have a larger capacity and hence, we expect it to offer bet-
ter recovery performance. We leave studying DeepInverses
with larger capacities as a topic of our future work. Second,
DeepInverse is specially useful for applications that need low-
latency recovery and at the same time we are not able to divide
images into smaller blocks, i.e., we need to apply a sensing
matrix to the entire signal rather than smaller blocks of it.

Table 1: Average reconstruction time of test set images for
different sampling rates and algorithms.

M
N

Reconstruction Time (s)
DeepInverse D-AMP TV P-AMP

0.2 0.01 3.41 2.53 1.53
0.1 0.01 2.93 2.34 1.23

0.01 0.01 2.56 2.26 0.94

2274

0 0.05 0.1 0.15 0.2 0.25
Undersampling Ratio

0

0.2

0.4

0.6

0.8

1
A

v
g

.
P

ro
b

a
b

il
it

y
 o

f
S

u
c
c
e
s
s

D-AMP

DeepInverse

P-AMP

TV Minimization

Fig. 2: Average probability of successful signal recovery for
different sampling rates and algorithms.

0 0.05 0.1 0.15 0.2 0.25
Undersampling Ratio

0

5

10

15

20

25

30

A
v
g

.
P

S
N

R
 (

d
B

)

D-AMP

DeepInverse

TV Minimization

P-AMP

Fig. 3: Average PSNR (dB) for different sampling rates and
algorithms.

10 15 20 25 30 35 40
PSNR (dB)

0

10

20

30

40

50

60

70

80

90

N
u

m
b

e
r

o
f

Im
a
g

e
s
 i
n

 T
e
s
t

S
e
t

Undersampling Ratio = 0.1

D-AMP

DeepInverse

10 15 20 25 30 35 40 45
PSNR (dB)

0

10

20

30

40

50

60

70

N
u

m
b

e
r

o
f

Im
a
g

e
s
 i
n

 T
e
s
t

S
e
t

Undersampling Ratio = 0.2

D-AMP

DeepInverse

Fig. 4: Histograms of the PSNRs of the test images for two
different sampling rates as recovered by D-AMP and DeepIn-
verse.

Table 2: Quality of reconstruction (PSNR in dB) for best (de-
noted by ↑) and worst (denoted by ↓) reconstructed images
by DeepInverse (DI) and D-AMP when undersampling ratio
is 0.1.

Condition DAMP ↑ DAMP ↓ DI ↑ DI ↓

Image

DeepInverse

26.54 13.55 27.23 13.10

DAMP

37.18 13.19 33.60 13.40

Table 3: Effect of noise on average PSNR (dB) of recon-
structed test images for D-AMP and DeepInverse (undersam-
pling ratio = 0.1). We added 20 dB noise to images of test set.
Due to noise-folding [18] the variance of the noise that we
observe after the reconstruction is larger than the input noise.

Noiseless
Measurements

Noisy
Measurements

DAMP 22.06 21.14
DeepInverse 19.14 18.70

0 0.5 1 1.5 2
Number of Backpropagation ×10

4

8

10

12

14

16

18

20

22

24

A
v
g

.
T

e
s
t

P
S

N
R

 (
d

B
)

Wavelet
+P-AMP TV

Minimization

D-AMP

DeepInverse

Fig. 5: Convergence of backpropagation training over dif-
ferent iterations for DeepInverse for the undersampling ratio
M/N = 0.1.

6. CONCLUSIONS
In this paper, we have developed the DeepInverse framework
for sensing and recovering signals. We have shown that this
framework can learn a structured representation from training
data and efficiently approximate a signal recovery at a small
fraction of the cost of state-of-the-art recovery algorithms.

2275

7. REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Trans.
Inform. Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[2] R. G. Baraniuk, “Compressive sensing,” IEEE Signal
Processing Mag., vol. 24, no. 4, 2007.

[3] E. J. Candès, “Compressive sampling,” in Proceed-
ings of the International Congress of Mathematicians.
Madrid, Spain, 2006, vol. 3, pp. 1433–1452.

[4] E. J. Candès and T. Tao, “Near-optimal signal recov-
ery from random projections: Universal encoding strate-
gies?,” IEEE Trans. Inform. Theory, vol. 52, no. 12, pp.
5406–5425, 2006.

[5] D. L. Donoho, A. Maleki, and A. Montanari, “Message-
passing algorithms for compressed sensing,” Proc. Natl.
Acad. Sci., vol. 106, no. 45, pp. 18914–18919, 2009.

[6] D. Needell and J. A. Tropp, “Cosamp: Iterative sig-
nal recovery from incomplete and inaccurate samples,”
Appl. Comput. Harmon. Anal., vol. 26, no. 3, pp. 301–
321, 2009.

[7] S. Mallat, A wavelet tour of signal processing, Aca-
demic Press, 1999.

[8] J. M. Duarte-Carvajalino and G. Sapiro, “Learning to
sense sparse signals: Simultaneous sensing matrix and
sparsifying dictionary optimization,” Tech. Rep., DTIC
Document, 2008.

[9] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An
algorithm for designing overcomplete dictionaries for
sparse representation,” IEEE Trans. Signal Processing,
vol. 54, no. 11, pp. 4311–4322, 2006.

[10] C. A. Metzler, A. Maleki, and R. G. Baraniuk, “From
denoising to compressed sensing,” IEEE Trans. Inform.
Theory, vol. 62, no. 9, pp. 5117–5144, 2016.

[11] A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A
deep learning approach to structured signal recovery,”
in Proc. Allerton Conf. Communication, Control, and
Computing. IEEE, 2015, pp. 1336–1343.

[12] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and
A. Ashok, “Reconnet: Non-iterative reconstruction of
images from compressively sensed random measure-
ments,” Proc. IEEE Int. Conf. Comp. Vision, and Pattern
Recognition, 2016.

[13] A. B. Patel, T. Nguyen, and R. G. Baraniuk, “A prob-
abilistic framework for deep learning,” Adv. in Neural
Information Processing Systems (NIPS), 2016.

[14] D. E. Rumelhart, G. E Hinton, and R. J. Williams,
“Learning representations by back-propagating errors,”
Cognitive Modeling, vol. 5, pp. 3, 1988.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bern-
stein, “Imagenet large scale visual recognition chal-
lenge,” Int. J. Computer Vision, pp. 1–42, 2014.

[16] E. J. Candès, J. Romberg, and T. Tao, “Robust un-
certainty principles: Exact signal reconstruction from
highly incomplete frequency information,” IEEE Trans.
Inform. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[17] A. Mousavi, A. Maleki, and R. G. Baraniuk, “Consistent
parameter estimation for Lasso and approximate mes-
sage passing,” arXiv preprint arXiv:1511.01017, 2015.

[18] M. A. Davenport, J. N Laska, J. R Treichler, and R. G.
Baraniuk, “The pros and cons of compressive sensing
for wideband signal acquisition: Noise folding versus
dynamic range,” IEEE Trans. Signal Processing, vol.

60, no. 9, pp. 4628–4642, 2012.

2276

