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ABSTRACT

We study the Nonnegative Matrix Factorization problem
which approximates a nonnegative matrix by a low-rank fac-
torization. This problem is particularly important in Machine
Learning, and finds itself in a large number of applications.
Unfortunately, the original formulation is ill-posed and NP-
hard. In this paper, we propose a row sparse model based
on Row Entropy Minimization to solve the NMF problem
under separable assumption which states that each data point
is a convex combination of a few distinct data columns. We
utilize the concentration of the entropy function and the `∞
norm to concentrate the energy on the least number of latent
variables. We prove that under the separability assumption,
our proposed model robustly recovers data columns that gen-
erate the dataset, even when the data is corrupted by noise.
We empirically justify the robustness of the proposed model
and show that it is significantly more robust than the state-of-
the-art separable NMF algorithms.

Index Terms— separable nonnegative matrix factoriza-
tion, sparse representation, row entropy minimization

1. INTRODUCTION

The Nonnegative Matrix Factorization (NMF) problem [1]
aims to express an n × m nonnegative matrix Y as DX ,
where D and X are nonnegative matrices of size n × s and
s×m, respectively, for some positive integer s < min{n,m}.
This problem finds itself in enormous number of applications
in various fields such as blind source separation, topic mod-
eling, recommendation systems, and clustering to name a
few. Unfortunately, the original formulation is ill–posed [2]
and NP–hard [3]. Most traditional methods rely on solving a
non-convex optimization problem which lacks of optimality
guarantee [4]. Therefore, provable algorithms for computing
NMF under appropriate assumptions are of particular interest.

Notation. We use bold uppercase letters for matrices, and
bold lowercase letters for column vectors. The notations 0k
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and 1k denote the all-zero and all-one vectors of length k, re-
spectively. We let Ik be the identity matrix in Rk×k. Without
subscripts, the sizes of these vectors and matrices should be
inferred from the context. Given a matrix Y , we let yi, yj ,
and yi,j denote its i-th column, j-th row and (i, j) element,
respectively. For an index set S, the matrix YS consists of the
columns of Y whose indices supported by S. The notation
R+ denotes nonnegative numbers. Similar notations are used
for higher dimensional vector spaces.

Recently, several provable algorithms have been proposed
in literature based on the separable assumption, which allows
the NMF problem to admit a unique solution [2]:

Definition 1 (Separable NMF). A data matrix Y is s–
separable if there exists a cone generated by a few columns
of Y that contains the entire dataset.

In this paper, we consider a variant of the separability which
also offers a unique factorization up to some permutation of
the data points.

Assumption 2 (Convex hull assumption). Given a matrix
Y ∈ Rn×m and some positive integer s < min{n,m}, there
exists an index set S of cardinality s such that Y = YSZ,
for some Z ∈ Rs×m+ satisfying 1TZ = 1T. Without loss of
generality (WLOG), we assume that S = {1, ..., s}.

That is, the entire dataset is contained in a convex hull
generated by s columns of the data matrix. This assumption
was justified in several applications such as text modeling,
hyperspectral unmixing, and blind source separation [5, 6, 7,
8, 9]. Throughout the paper, we assume that the vertices of
this convex hull are distinct.

The equation in Assumption 2 can be rewritten as Y =
Y X , where X ∈ Rm×m such that each column of X sums
to one, and at most s rows of X are nonzero. These rows of
X are supported by S. Then solving the NMF problem under
this assumption becomes finding the s nonzero rows of X
satisfying these above constraints. In the language of sparse
representation, the problem can be modeled as

min
X
‖X‖row,0 s.t. Y X = Y , X ≥ 0, 1TX = 1T, (1)

where ‖X‖row,0 counts the number of nonzero rows of X .
The distinct vertices of the dataset can then be identified by
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extracting the nonzero rows of an optimal solution returned
by this row sparse problem.

Unfortunately, this problem is intractable and NP-Hard.
Several algorithms have been introduced in literature [8, 10,
11, 12, 13, 14, 15, 16, 17] which aim to recover the vertex set
by either solving easier linear programming or convex opti-
mization problems, or by adopting a greedy pursuit method.
In this paper, we address the intractability of (1) by propos-
ing a non-convex relaxation to this problem. Specifically, we
introduce a row sparsity measure based on the entropy func-
tion over the rows of the coefficient matrix. We demonstrate
rigorously that by minimizing this measure under separabil-
ity, one can robustly recover the vertices even when the data
is corrupted by noise. As we will illustrate in the experi-
ment section, our algorithm is remarkably more robust than
the state-of-the-art algorithms for solving separable NMF.

2. ROW ENTROPY MINIMIZATION

We solve the NMF problem under Assumption 2 by consid-
ering the row sparse problem (1). To begin, for any matrix
X ∈ Rm×m, define ν(X) = [‖x1‖∞, ..., ‖xm‖∞]T. Then
the sparsity of ν(X) and the row sparsity ofX are equivalent.
To overcome the NP-hardness of (1), we propose to solve the
following optimization problem named Row Entropy Mini-
mization (REM):

min
X
‖X‖h,∞ s.t. Y X = Y , X ≥ 0, 1TX = 1T, (2)

where ‖X‖h,∞ = h(ν(X)). Here, the entropy function h(·)
is defined as

h(z) = −
∑
i

|zi|
‖z‖1

log
|zi|
‖z‖1

, (3)

for any vector z ∈ Rm. We adopt the common convention
that 0 log 0 = 0 and h(0) = 0. It was argued in [18, 19] that
this function promotes the sparsity of its argument by skewing
the signal energy towards a few of its elements. Therefore, a
small value of the row entropy term ‖X‖h,∞ induces the row
sparsity ofX .

More importantly, in practice, data is often contaminated
by noise. In this case, we consider the following noisy model

Ỹ = Y +N = YSZ +N , (4)

where Y ,YS and Z are defined in Assumption 2, and N ∈
Rn×m is a bounded noise matrix. Here, each column of the
noise matrix N is assumed to be bounded, i.e., ‖nj‖2 ≤ ε,
for some small positive number ε, and for every column nj of
N . We thus find the vertices in noisy settings by first solving
the following robust variant of REM:

min
X

‖X‖h,∞ (5)

s.t. ‖ỹj − Ỹ xj‖2 ≤ 2ε,∀j = 1, ...,m,

X ≥ 0, 1TX = 1T.

The vertices can then be identified from the dominant rows
of the optimal solution of this optimization problem. This
procedure is summarized in Algorithm 1.

Algorithm 1 Robust REM for Vertex Identification

input: Noisy data matrix Ỹ , the noise level ε.
output: The estimated vertex set Ŝ of the original data ma-
trix.

1. Find the optimal solution X∗ of the optimization
problem (5).

2. Let Ŝ be the index set corresponding to the s rows of
X∗ with the largest `∞ norm.

In the next section, we will show that under the convex
hull assumption, Algorithm 1 is guaranteed to exactly identify
the vertices of the corrupted data matrix, provided that the
noise power is relatively small. Before continuing, we would
like to point out that the row entropy term ‖ · ‖h,∞ is not a
norm as it does not satisfy the triangle inequality.

3. THEORETICAL GUARANTEES

In this section, we prove that REM is robust under small per-
turbation. To simplify the analysis, the columns of Y are as-
sumed to be distinct. Also, let us define the margin parameter

ρ = min
j /∈S,k∈S

‖yj − yk‖2, (6)

which characterizes the isolation of the vertices. We assume
that ρ > 0, meaning that the vertices are separated enough
from the non-vertex data points. Furthermore, let

γ = min
k∈S

min
α≥0,1Tα=1

‖yk − YS\kα‖2, (7)

which bounds from below the distance from a vertex to the
convex hull generated by the other vertices. In some sense,
this parameter characterize the fatness of the polytope gener-
ated by the data vertices. Intuitively, large values of ρ and γ
make the isolation of the vertices and the shape of the data
polytope more robust to noise. This in turn makes it easier
to identify the vertices. Finally, we assume that the data is
bounded by a finite number defined by

κ = max
j=1,...,m

‖yj‖2. (8)

We are now ready to state our main result.

Theorem 3. Let Y be a data matrix satisfying Assumption
2. Suppose the data is corrupted by bounded noise, i.e., Ỹ =
Y +N , where ‖nj‖2 ≤ ε,∀j = 1, ...,m. If

ε <
ργ

8κ(s+ 1)
, (9)

then Algorithm 1 identifies the vertices of Y exactly.

2263



This result is consistent with the intuition discussed
above. If ρ or γ is small, meaning that the vertices are
less isolated from the others, or the data polytope is thin, the
noise power must be small to retain the separability of the
data. Furthermore, when the signal space is bounded, if the
number of vertices s is large, the data points tend to be close
to each other. Therefore, the noise level must be small to
guarantee vertex exact recovery.

The proof for the main theorem is given at the end of this
section. The main ingredient of our analysis is the concentra-
tion property of the entropy function. The following lemmas
formalize this important property.

Lemma 4. Let x ∈ Rm+ such that 0 ≤ xi ≤ 1, ∀1 ≤ i ≤ m.
Let k and l be two arbitrary distinct indices satisfying xk ≥
xl. Define x(δ) := x̃ as

x̃i = xi, ∀i 6= k, l; x̃k = xk + δ, x̃l = xl − δ,

where δ is a small positive number such that 0 ≤ x̃k, x̃l ≤ 1.
Then h(x) > h(x(δ)).

In other words, concentrating signal energy on signifi-
cant elements while dispersing energy from small elements
decreases the value of the entropy function.

Lemma 5. Let x =
(
1Tk 0Tm−k

)T
, for some 1 ≤ k ≤ m−1,

and x(α) =
(
1Tk α 0Tm−k−1

)T
, for some 0 < α ≤ 1. It

follows that h(x) < h(x(α)).

Intuitively, the aforementioned lemmas suggest that when
the vector elements are bounded from above, solutions of en-
tropy function minimization tend to concentrate the energy
on the least number of elements, resulting in a sparser solu-
tion. This is formalized in the lemma below. Its proof can be
obtained by iteratively applying Lemma 4 and Lemma 5.

Lemma 6. Let x =
(
1Tk 0Tm−k

)T
, and x̃ =

(
1Tk αT

)T
,

where α ∈ Rm−k+ . If α is nonzero, then h(x) < h(x̃).

We are now ready to provide the proof sketch for Theorem
3.

Proof sketch for Theorem 3. Consider the noisy model (4),
where Y satisfies Assumption 2, and N is a bounded noise
matrix whose column energy is bounded by ε > 0. Let X be
a feasible solution of (5). Similar to the proof of Theorem 1
in [20], we can show that

‖xk‖∞ ≥ xkk ≥ 1− 8εκ

ργ
,∀k ∈ S. (10)

LetZ be the coefficient matrix defined in Assumption 2, then
Z̄ =

[
ZT 0

]T
is a feasible solution of (5). Let X∗ be the

optimal solution of (5). It follows that ‖X∗‖h,∞ ≤ ‖Z̄‖h,∞.
Iteratively applying Lemmas 4, 5, and 6, this implies, ∀j /∈ S,

‖xj∗‖∞ ≤
∑
j /∈S

‖xj∗‖∞ ≤ s−
∑
k∈S

‖xk∗‖∞ ≤
8εκ

ργ
s. (11)

Therefore, if 8εκ
ργ s < 1 − 8εκ

ργ , or equivalently, ε < ργ
8κ(s+1) ,

then ‖xj∗‖∞ < ‖xk∗‖∞,∀j /∈ S, k ∈ S . In other words,
the s rows of X∗ with the largest `∞ norm correspond to the
vertices of Y . This completes the proof for the theorem.

4. ITERATIVE ALGORITHMS FOR REM

As we will show in the experiment section, solving robust
REM leads to better solutions comparing to the state-of-the-
art separable NMF algorithms. The main issue here is that the
row entropy objective ‖·‖h,∞ in REM is nonconvex. We thus
approximate the objective function by its first order approx-
imation and utilize an iterative algorithm to solve a series of
easier subproblems.

In a simplified setting, we denote ν = ν(X) and νt =
ν(Xt). Let Xt be the solution estimate at iteration t of the
algorithm, then the first order approximation of the objective
function in REM is given by

‖X‖h,∞ = h(ν) ≈ h(νt) +∇h(νt)T(ν − νt) (12)

=
∑
i

[∇h(νt)]iνi + h(νt)−∇h(νt)Tνt.

Recall that νi = ‖xi‖∞, ∀1 ≤ i ≤ m, the next solution
estimate can thus be obtained by solving

min
X

∑
i

wti‖xi‖∞ s.t. Y X = Y , X ≥ 0, 1TX = 1T,

(13)
where wti = [∇h(νt)]i, ∀1 ≤ i ≤ m. The following propo-
sition shows that the weights have closed form and are easily
computable [18].

Proposition 7. Let h be the entropy function defined in (3),
and let ν be a nonzero nonnegative vector, then

∂h(ν)

∂νi
= − log νi

‖ν‖1
+

∑
j νj log νj

‖ν‖21
. (14)

As a consequence,

wti = − log νti
‖νt‖1

+

∑
j ν

t
j log νtj

‖νt‖21
, (15)

for νti > 0. When νti = 0, we let wti = +∞. Moreover,
the weights are dictated by the concentration behavior of the
entropy function minimization. The following corollary sum-
marizes this insight. It follows by the fact that 0 ≤ νti ≤ 1,
∀1 ≤ i ≤ m.

Corollary 8. If νti < νtk, then wti > wtk.

In other words, small energy rows are given large weights at
the next iteration, and are thus further suppressed. Therefore,
at the end of the algorithm energy is concentrated only on a
small subset of rows.
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In noisy settings, the subproblems in robust REM can be
written as

min
X

λ
∑
i

wti‖xi‖∞ (16)

s.t. ‖ỹj − Ỹ xj‖2 ≤ 2ε,∀j = 1, ...,m,

X ≥ 0, 1TX = 1T.

Therefore, at each iteration of REM and its robust variant,
we solve a weighted `1,∞ subproblem under the same con-
straints as the original problem. Problems (13) and (16) can
be solved efficiently by an Alternating Direction Method of
Multipliers (ADMM) approach [21]. The main steps of this
iterative algorithm are summarized in Algorithm 2.

Algorithm 2 Iterative Algorithms for Solving Robust REM
input: data matrix Y , the noise level ε.
initialization: X0.
while not converged do

1. Update the weights:

wti = − log νti
‖νt‖1

+

∑
j ν

t
j log νtj

‖νt‖21
, i = 1, ...,m. (17)

2. Update the estimate: Set Xt+1 to be the optimal
solution of (16).
end while
output: Estimated solutionX∗ = Xt.

5. EXPERIMENTAL RESULTS

This section presents experimental results for REM algo-
rithm. For the benchmarked algorithms, we use the imple-
mentations on the author’s websites. We test the robustness
of our proposed algorithm against noise on synthetic dataset.
The experiment setting is similar to that in [15]. For each
simulation, the data is generated as follows. Elements of
each column of the vertex matrix YS ∈ Rn×s are sampled
from a uniform distribution on [0, 1]. The coefficient matrix
Z ∈ Rs×m has the form of [Is,Z

′] where Is ∈ Rs×s is
the identity matrix, and each column of Z ′ ∈ Rm×(m−s)+

follows from a Dirichlet distribution whose parameters are
chosen from a uniform distribution on [0, 1]. The data matrix
is generated by Y = YSZ + N where each element of the
noise matrix N is drawn from a Normal distribution, then is
multiplied by some parameter β. In the experiments, we let
n = 5,m = 25, and s = 5. The number of trials is 100.

Figure 1 shows the `∞ norm of the rows of typical so-
lutions of REM when the data is corrupted by moderate and
large noise. It can be seen that the energy of the solutions
concentrates on the rows corresponding to the vertices, which
is consistent with Theorem 3.

We next compare our proposed algorithm with the state-
of-the-art near-separable NMF algorithms: XRAY [8], SPA
[14], SNPA [15], and GVP [9]. Figure 2 shows the exact
recovery rates of the algorithms. It can be seen that REM is
significantly more robust than the others.

Fig. 1. Row `∞ norm of typical solutions of REM. Top: mod-
erate noise. Bottom: large noise.

Fig. 2. Robustness comparison on synthetic data.

6. CONCLUSION

In this paper, we propose a row sparse model, namely Row
Entropy Minimization, based on the entropy function to solve
the separable NMF problem. We prove rigorously that, under
separability , REM robustly recovers the vertices generating
data. We propose an iterative algorithm to efficiently solve
REM, which consists of a series of weighted `1,∞ subprob-
lems. Finally, we show empirical evidences supporting our
theoretical analysis. We show that REM is remarkably more
robust than the state-of-the-art separable NMF algorithms.
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