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ABSTRACT

Independent component analysis (ICA) research has been driven by
various applications in biomedical signal separation, telecommuni-
cations, speech analysis, and more. One particular class of algo-
rithms for instantaneous ICA uses tensors, which have useful prop-
erties. In an attempt to port these properties to convolutive methods,
we zoom in on an existing method that uses second-order statistics.
By pointing out links in the literature, we show that this method is in
fact a typical tensor-based method, even though this was not recog-
nized by the authors at the time.

The existing method mentioned above can be interpreted as a
tensorization step followed by a deconvolution step. However, as
sometimes done in literature, one may consider using the opposite
approach; starting with a deconvolution step and then tensorizing the
remaining instantaneous mixture. Because subspace-based deconvo-
lution can be slow, we propose a fast variant which uses only partial
information. We then use this variant to compare the approach start-
ing with tensorization and the one starting with deconvolution.

Index Terms— tensor, convolutive independent component
analysis, tensorization, deconvolution, second-order statistics

1. INTRODUCTION

Various signals in biomedical data processing and array processing
can be interpreted as an instantaneous mixture of statistically inde-
pendent components. To retrieve these components, one can turn
to independent component analysis (ICA) [1]. However, in several
applications, the underlying independent components are not mixed
instantaneously because of path length differences and reflections.
Among others, this is the case for speech signals, telecommunica-
tions, and seismic signals [2]. For these applications, a convolutive
mixture model is more appropriate.

Tensors are higher-dimensional generalizations of vectors and
matrices. A key strength of tensors is the uniqueness of their decom-
positions under mild conditions [3, 4]. Moreover, several decompo-
sitions can be computed algebraically [5]. These properties make
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tensors useful tools in chemometrics, psychometrics, and signal sep-
aration [6–8].

For both instantaneous as convolutive ICA, a variety of algo-
rithms have been developed [1, 9]. Of particular interest are tensor-
based methods, which are well-established for instantaneous ICA
[1, 10, 11]. In an attempt to port the favorable tensor properties
to convolutive ICA, several tensor-based algorithms have been pre-
sented for convolutive mixtures [12, 13]. In these methods, the con-
volution gives rise to additional structure, which is often not ex-
ploited. Since taking this structure into account may lead to faster
or more accurate methods, recent advances focus on exploiting the
structure [14]. In this paper, we focus on convolutive mixtures of
temporally coherent and mutually independent components. A sep-
aration algorithm for this model using second-order statistics was
coined in [13], and can actually be seen as the convolutive extension
of the popular SOBI algorithm for instantaneous ICA [10]. Though
not recognized by the authors, the method in [13] is in fact a tensor-
based approach. As a first contribution, we will clarify the link be-
tween the method from [13] and tensor decompositions.

Most convolutive ICA methods involve a deconvolution step and
a separation step. The method from [13] first separates the mixture
and subsequently deconvolves the resulting filtered versions of the
original sources. The opposite approach, in which the data are de-
convolved first, is quite popular because it allows one to use any
instantaneous ICA algorithm after the deconvolution. Deconvolving
is typically done using second-order statistics [15, 16] or subspace-
based techniques [17–19]. Subspace-based techniques avoid com-
puting any statistics, but they involve large-size matrices and may
be slow [20]. For single-input multiple-output (SIMO) systems, this
has been countered by using only part of the data [21]. As a second
contribution, we extend this idea to MIMO systems to obtain faster
deconvolution. We give a lower bound for the number of needed
observations and provide a relative measure to determine reasonable
values for the number of observations in practice. Numerical ex-
periments support our analysis. Due to space limitations, further
comparisons are done in a follow-up paper.

Notations: scalars are represented by normal lowercase letters
(e.g., a), vectors by bold lowercase letters (e.g. a), matrices by
bold uppercase letters (e.g. A) and tensors by calligraphic letters
(e.g. A). The Kronecker product is denoted by ⊗. The trans-
pose and conjugate transpose are represented by ·T and ·H, respec-
tively. Commas and semicolons are used for horizontal and verti-
cal concatenation, respectively. Bars are used to represent dropped
block-rows. For instance, consider A =

[
A(1); · · · ;A(N)

]
, then

A =
[
A(2); · · · ;A(N)

]
and A =

[
A(1); · · · ;A(N−1)

]
. The

mathematical expectation is denoted by E {·}.
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2. PROBLEM STATEMENT

A convolutive mixture with M outputs xm(t) and R inputs sr(t)
can be written as

xm(t) =

R∑
r=1

L∑
l=0

hmr(l)sr(t− l) for m ∈ {1, . . . ,M}. (1)

In this equation, hmr(l) with l ∈ {0, . . . , L} represents the filter
between the rth input and mth output. The maximum filter delay is
represented by L.

If the system is strictly overdetermined, i.e., if there are strictly
more outputs than inputs, equation (1) can be written as an overde-
termined matrix equation

X = HS, (2)

in which X ∈ CML′×N represents the outputs and S ∈ CRLtot×N

contains (lagged versions of) the inputs. The value L′ represents the
number of lagged outputs taken into account and is chosen such that
the mixing matrix H ∈ CML′×RLtot is tall, i.e., such that ML′ ≥
RLtot, with Ltot = L + L′. Note that including lagged versions
of the outputs to obtain a tall matrix H, sometimes called temporal
smoothing, is only possible because the system is strictly overdeter-
mined.

The columns x(n) and s(n) of the matrices X and S take the
form

x(n) = [x1(n), . . . , xM (n), x1(n− 1), . . . ,

xM (n− 1), . . . , xM (n− L′ + 1)
]T
,

s(n) = [s1(n), s1(n− 1), . . . , s1(n− Ltot + 1), . . . ,

sR(n), . . . , sR(n− Ltot + 1)]T . (3)

Equation (3) shows that if the rows of S are properly permuted,
it has block-Toeplitz structure for L > 0. Denote the row-
permuted version of S having block-Toeplitz structure by S̃ =[
S̃(1); . . . ; S̃(Ltot)

]
∈ CRLtot×N , in which the S̃(l) ∈ CR×N are

shifted versions of each other.
The mixing matrix H ∈ CML′×RLtot from (2) is given by

H = [H1 H2 · · · HR],

in which

hq(l) =
[
h1q(l) h2q(l) · · · hMq(l)

]T ∈ CM ,

and

Hq =

hq(0) · · · hq(L) · · · 0
. . .

. . .
. . .

0 · · · hq(0) · · · hq(L)

 ∈ CML′×Ltot .

Finally, throughout the text we assume that (1) the system is strictly
overdetermined, i.e., M > R, (2) H has full column rank, (3) the
inputs have zero mean and are temporally coherent but mutually in-
dependent and (4) ST has full column rank. Using these assumptions
and the structural information described above, the goal is to retrieve
the original inputs sr(t) for r ∈ {1, . . . , R} from the observed mix-
tures.

C(x) = H HHC(s)

Fig. 1. The unmixing step in convolutive ICA can be written as a
block term decomposition in multilinear rank-(Ltot, Ltot, ·) terms.

3. DECONVOLUTION AFTER TENSORIZATION

In [13, 22], a convolutive generalization of the popular SOBI-
algorithm for instantaneous mixtures [10] is presented, as mentioned
in the introduction. This convolutive method starts by computing
lagged second-order statistics of x(n), which can be stacked into a
third-order tensor C(x). The kth frontal slice of this tensor is given
by

C
(x)
k = E

{
x(n)xH(n+ τk)

}
∈ CML′×ML′

= HE
{
s(n)sH(n+ τk)

}
HH.

Because the inputs are temporally coherent and mutually inde-
pendent, it follows from (3) that the (lagged) covariance matrix
E {s(t)sH(t+ τk)} will be block-diagonal. Consequently, the
frontal slices of C(x) can be jointly block-diagonalized [13]. From
this joint block-diagonalization, H can be found up to two inde-
terminacies: (1) its block columns Hi can be arbitrarily permuted
and (2) each block column Hi can be multiplied with a nonsingular
matrix Ei ∈ CLtot×Ltot . Though the authors did not realize it at
the time, this simultaneous block-diagonalization is in fact a block-
term decomposition in multilinear rank-(Ltot, Ltot, ·) terms [4], as
illustrated in Figure 1. Algorithms for this decomposition can be
found in [23–25]. Because of the indeterminacies of joint block-
diagonalization, computing the decomposition only allows us to
retrieve the inputs up to a FIR filter [13]. One can deal with these
filters using SIMO deconvolution techniques [21], which eventually
return the inputs up to scaling and permutation.

In instantaneous ICA, all tensor-based methods compute statis-
tics which are stored in a tensor. By subsequently decomposing this
tensor, the mixing system and sources are extracted [10, 11]. Con-
ceptually, the approach for convolutive systems above is exactly the
same, which implies that this method nicely fits in a tensor-based
framework for convolutive ICA.

4. DECONVOLUTION BEFORE TENSORIZATION

One of the drawbacks of the method from the previous section
lies in the computation time. By taking lagged outputs into ac-
count, more statistics have to be estimated. Moreover, joint block-
diagonalization may take quite some time. By first deconvolving the
outputs, we reduce the convolutive mixture to an instantaneous one,
which can be solved more quickly. In this article, the main focus
lies on the deconvolution step, which has to be both accurate and
computationally inexpensive.

Subspace methods exploiting block-Toeplitz structure are well-
established in signal and array processing [17–19, 26]. We briefly
recall a technique from [26]. Compute the dominant row space of
X, which will be equal to the row space of S since H is assumed to
have full column rank. Store theRLtot basis vectors for the dominant
subspace of X in the matrix U ∈ CRLtot×N . We now have

UT = S̃TM =
[(

S̃(1)
)T

, . . . ,
(
S̃(Ltot)

)T]
M, (4)
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in which M ∈ CRLtot×RLtot . Since S̃ has block-Toeplitz structure,
equation (4) represents a block-Toeplitz factorization. Methods to
solve this type of factorization can be found in [21, 26, 27]. We will
use the result from [26], in which Lemma II.4 states that the decom-
position in (4) is essentially unique if M and T have full column
rank, in which T ∈ C(N−1)×R(Ltot+1) is defined by

T =

[(
S̃(1)

)T

, . . . ,
(
S̃(Ltot)

)T

,
(
S̃(Ltot)

)T
]
.

In this problem, essential uniqueness means that the mixture is de-
convolved up to an instantaneous mixture. Mathematically, this im-
plies that if the conditions hold, we obtain an input matrix estimate
K ∈ CRLtot×N that has block-Toeplitz structure and that is related
to the real inputs as follows:

K = (ILtot×Ltot ⊗A) S̃, (5)

in which A ∈ CR×R is a nonsingular matrix. Since this decon-
volution step is deterministic, only few data samples are needed in
principle. Reducing the number of used data samples leads to a faster
deconvolution. However, we do need the full deconvolved signals to
properly estimate the statistics for the resulting instantaneous ICA
problem. This problem is solved by using only a part of the samples
Npart in the deconvolution step. The method described above applied
to the partial subspace Upart ∈ CRLtot×Npart leads to an input matrix
estimate Kpart ∈ CRLtot×Npart . Since both matrices share the same
row space, they are related through

Upart
TG = Kpart

T, (6)

with G ∈ CRLtot×RLtot . The transformation matrix G can be com-
puted from this equation and subsequently applied to the full sub-
space U to obtain the full-length deconvolved signals K = GTU.

Minimum number of samples To see how many samples must
be retained in theory, we derive a lower bound on the number of
observations Npart such that such that (4) is essentially unique. For
generic inputs, T will have full column rank if

Npart ≥ R(Ltot + 1) + 1. (7)

It then follows that the input matrix S̃ has full row rank. Since H
is assumed to have full column rank, it follows that M also has full
column rank and subsequently that the decomposition in (4) is essen-
tially unique. Also note that the linear system (6) is overdetermined
if this condition holds.

Determining the number of samples in practice The number of
samples Npart is a trade-off between computational speed and accu-
racy of the deconvolution. Estimating R2L2

tot parameters from the
NpartRLtot equations in (6) can be done in least-squares sense. The
standard deviation of the least-squares estimator is proportional to

σLS ∝
1√

NpartRLtot −R2L2
tot

.

To get an idea of the (relative) accuracy, one can use this equation
to assess the influence of reducing the number of observations Npart.
For instance, if R = 2 and Ltot = 4, then reducing the number
of observations from 1000 to 100 increases the standard deviation
on the estimator with a factor 3.28, which may still be reasonable
depending on the application.

0.2

1.2

20 dB SNR

30 dB

40 dB

Values for 103

observations

Angle between estimated and
true source subspace (rad)

11 300

101

10−3

20, 30, 40 dB SNR

Number of used observations

Time (s)

Fig. 2. Using fewer observations enables faster deconvolution with-
out sacrificing much accuracy for reasonable sample sizes. Here, the
theoretical minimum number of observations needed is 11.

Resolving the remaining mixture Once K is estimated, one can
extract the first block-row K(1), for which it follows from (5) that

K(1) = AS̃(1) ∈ CR×N .

Since S̃(1) contains all sources without lags, K(1) is an instanta-
neous mixture of independent sources. Any existing technique for
instantaneous ICA can be used to separate this remaining mixture
up to scaling and permutation of the original inputs [1, 9].

5. NUMERICAL EXPERIMENTS

5.1. Synthetic data

In both experiments below, the synthetic inputs are generated by
passing a complex signal with components randomly sampled from a
uniform distribution over [0, 1] through a convolutive filter, of which
the 20 coefficients have been randomly sampled from a standard nor-
mal distribution. This procedure yields mutually independent but
temporally coherent inputs. The actual system coefficients making
up the convolutive mixture are randomly sampled from a standard
normal distribution. All additive noise is Gaussian.

5.1.1. Effect of partial information for deconvolution

To illustrate the effect of partial information, consider a convolutive
mixture with 4 outputs, 2 inputs and a maximum filter delay of 2.
The available output signals have 103 samples. Following the ap-
proach outlined in Section 4, we estimate the input subspace using
only part of the available data. The mean result over 100 experi-
ments is shown in Figure 2. The theoretical minimum number of
samples can be computed using equation (7) and is equal to 11 in
this example. In the neighborhood of this theoretical minimum, the
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Fig. 3. Using deconvolution or tensorization as the first step in the
algorithm yields comparable results. The small difference between
both approaches arises from the number of available observations.

accuracy is low due to the big influence of noise. For a higher num-
ber of observations, the figure shows that using partial information
enables a much faster deconvolution, with only little loss in accuracy
when compared to the values for 103 observations. Note that none of
the subspace estimates is exact, this can be explained by noting that
we are trying to estimate the long space of a matrix, which cannot
be estimated consistently in noisy conditions [28].

5.1.2. Comparison of both strategies

To see whether it is better to deconvolve first and tensorize after-
wards or the other way around, we compare both approaches. Con-
sider a system with 4 outputs, 2 inputs, a maximum filter delay of
L = 1 and signals of length 104. For the fast deconvolution pre-
sented in Section 4, 200 observations were used. After deconvolu-
tion, SOBI is used with the same time lags as its convolutive exten-
sion in this experiment (which are the first 20 nonzero lags). Fig-
ure 3 shows the mean performance over 1000 experiments of both
approaches for various signal-to-noise ratio (SNR) values and for a
varying number of available observations. The performance is ex-
pressed as the relative error on the inputs, after optimal permutation
and scaling of the estimates.

The left part of the figure shows that the approach from [13],
which starts by tensorizing, performs slightly better. However, this
comes at the costs of a slower method. On average, the method
takes 0.121 s on a standard laptop1, whereas deconvolution before
tensorization takes 0.061 s, both for signals of length 104. The dif-
ference in accuracy can be explained as follows: since the available
signals are long, the lagged statistics can be estimated accurately.
Therefore, tensorizing the data first has a denoising effect without
much loss of accuracy. If this is the case, we expect the accuracy
to drop when fewer data samples are available because the estima-
tion error of the statistics will be larger. This is indeed the case, as
illustrated in the right part of Figure 3, which has been simulated
with 20 dB SNR. The approach starting with deconvolution is less
influenced by the number of data samples because the deconvolution
step is deterministic. The crossover point lies around 100 samples.
So when few data points are available, and statistics cannot be esti-
mated accurately, one should deconvolve first.

1Using Matlab on a laptop containing an Intel Core i7-4810MQ CPU.

0 72 200

True inputs Estimated inputs

Other input bleeds through

Frequency (Hz)

Fig. 4. Apart from a slight influence at 72 Hz, the fast deconvolution
approach followed by SOBI cleanly separates a convolutive mixture
of vibrational signals stemming from rotational machines.

5.2. Application to rotating machines

Vibration analysis is often used in rotating machines to find faults
such as bearing defects without stopping production [29]. From the
frequencies of the machine vibrations, one can pinpoint which com-
ponent is faulty. However, if several machines are working side by
side, their vibrations may travel through the foundation and disturb
measurements. This is where blind source separation comes in [30].
If the machines are sufficiently different, their vibrations will be sta-
tistically independent. This motivates the use of convolutive ICA
techniques. To illustrate our method in this context, we simulate
rotating machine vibrations using a model for gearbox vibrations
used in [30]2. The simulated vibrational signals are mixed convo-
lutively with filters of maximum length L = 3 to obtain 5 outputs,
to which Gaussian noise is added such that the SNR is 30 dB. From
these outputs, the inputs are estimated using the method that first
deconvolves and then tensorizes, using 200 observations for the de-
convolution and SOBI with 20 nonzero time lags as instantaneous
ICA method. The results were computed in 0.16 s on a standard
laptop. The obtained relative error on the original vibration signals
is −18.8 dB. Figure 4 shows that at 72 Hz, a small error is notice-
able in the estimated input where the effect of the other input slightly
bleeds through. Apart from this, the frequency peaks of both signals
are cleanly separated.

6. CONCLUSION

First, we linked an existing method for convolutive ICA with tensor-
based methods. Next we contrasted this method with its opposite
approach that starts by deconvolving the data before tensorizing. To
do the deconvolution efficiently, a new subspace-based method was
presented which uses only part of the available information. Through
numerical experiments, this fast deconvolution was shown to be al-
most as accurate as methods using all information, while being much
faster. Its effectiveness was illustrated in a simulation of rotational
machine vibrations. Finally, we compared the speed and accuracy of
the approach starting with tensorization and its opposite approach.

2For completeness, we give all parameter values. First source:
a = 3, A = [−0.2792,−1.7251,−0.2326], fm = 55,
φi = [0.0027, 0.1546, 0.0808], b = 2, B = [1.8883,−0.8930],
fp = 77, φj = [−0.3361, 0.288]. Second source: a =
3, A = [−0.1479,−2.7398,−1.6482], fm = 45, φi =
[0.2198, 0.1782,−0.0626], b = 2, B = [−1.6716,−1.0965], fp = 81,
φj = [0.0842,−0.2716].
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