
MULTIMODAL SPARSE BAYESIAN DICTIONARY LEARNING APPLIED TO
MULTIMODAL DATA CLASSIFICATION

Igor Fedorov ∗, Bhaskar D. Rao, Truong Q. Nguyen

Department of Electrical and Computer Engineering
University of California, San-Diego

ABSTRACT
In this paper, we present a novel multimodal sparse dictionary
learning algorithm based on a hierarchical sparse Bayesian
framework. The framework allows for enforcing joint sparsity
across dictionaries without restricting the actual entries to be
equal. We show that the proposed method is able to learn
dictionaries of higher quality than existing approaches. We
validate our claims with extensive experiments on synthetic
data as well as real-world data.

Index Terms— Dictionary learning, signal representa-
tion, multimodal

1. INTRODUCTION

Due to improvements in sensor technology, computational re-
sources, and communication, acquiring vast amounts of data
has become relatively easy [1]. Given the ability to harvest
data, the task still remains as to how to extract relevant infor-
mation from it. In most cases, the data is multimodal, which
introduces novel challenges in learning from the data. Re-
cently, multimodal dictionary learning (DL) and sparse cod-
ing have become popular tools for fusing information from
disparate data modalities [2][3][4][5][6].

The multimodal DL problem consists of estimating dictio-
naries {Dj}Jj=1,Dj ∈ RNj×M , and encodings {xij}

L,J
i=1,j=1

given data {yij}
L,J
i=1,j=1 such that yij ≈ Djx

i
j , where L de-

notes the number of data points and J the number of modal-
ities. In most cases of interest, we are interested in learning
overcomplete dictionaries because they are much more flex-
ible in the range of signals they can represent [7]. Since yij
admits an infinite number of representations under overcom-
plete (and full-rank) Dj , it is often desirable to constrain xij
to be sparse [8].

Without any further constraints, the multimodal DL prob-
lem, as described, can be viewed as a set of J independent
unimodal DL problems. To fully capture the multimodal na-
ture of the problem, we must encode our prior knowledge
that each set of points {yij}Jj=1 is generated by some com-
mon source which happens to be measured J different ways.
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For instance, in [9], low and high resolution image patches
are modelled as yi1 and yi2, respectively, and the association
between yi1 and yi2 is enforced by the constraint xi1 = xi2.
The resulting multimodal DL problem is then to solve [10]

Ω∗ = arg min
Ω

L∑
i=1

∥∥∥ỹi − D̃xi∥∥∥2

2
+ λ

∥∥xi∥∥
1

(1)

where

ỹi =
[(
yi1
)T · · ·

(
yiJ
)T ]T

D̃ =
[
DT

1 · · · DT
J

]T
Ω =

{
{Dj}Jj=1, {xij}

L,J
i=1,j=1

}
,

the `1 norm is used as a proxy to the `0 sparsity measure, and
the modality subscript for xi is omitted because the sparse
codes are constrained to be the same. In a classification
framework, (1) can be viewed as learning a multimodal fea-
ture extractor, where (xi)∗ is the multimodal representation
of {yij}Jj=1 that is fed into a classifier [2][11][3].

There are two significant issues with (1):

1. While using the same sparse code for each modality es-
tablishes an explicit relationship between the dictionar-
ies for each modality, the same coefficient values may
not be able to represent different modalities well.

2. It is often the case that one data modality is less noisy
than another and the DL algorithm should be able to
leverage the clean modality to learn on the noisy one.
Since (1) constrains the regularization parameter λ to
be the same for all modalities, it is impossible to in-
corporate prior knowledge about the noise level of each
modality.

One recent approach that builds upon the K-SVD algo-
rithm [8], which we will refer to as Joint `0 Dictionary Learn-
ing (J0DL), seeks to address these issues by framing the prob-
lem as [5]

Ω∗ = arg min
Ω:{χi

j}Jj=1=χi,|χi|≤s,∀i

L,J∑
i=1,j=1

λj‖yij −Djx
i
j‖22

(2)
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where χij denotes the support of xij and s the desired spar-
sity of the solution. This approach seeks to establish a simi-
lar relationship between the sparse codes of each modality as
(1), while allowing the coefficients themselves to vary. The
weights {λj}Jj=1 allow for encoding prior information about
the noise level of yij . The major drawback of J0DL is that,
since (2) has an `0 type constraint, solving it requires a Si-
multaneous Orthogonal Matching Pursuit (SOMP) [12] algo-
rithm called Distributed Compressive Sensing SOMP (DCS-
SOMP)[13]. DCS-SOMP is a greedy algorithm and can pro-
duce poor solutions, especially if one modality is much nois-
ier than another.

In this work, we propose a novel multimodal DL approach
based on a hierarchical sparse Bayesian model [14][15]. We
build upon the seminal Sparse Bayesian Learning (SBL)
[16][17] framework along with its extensions to multiple
[18][19] and multimodal measurements [5]. Our approach
is able to capture the relationship between diverse datasets
within the DL process, while addressing both issues above
and benefiting from the significant sparse coding performance
gains afforded by the Bayesian model [20][5]. Moreover, in-
corporating DL within the Bayesian framework leads to a
joint (dictionary and sparse code) optimization approach with
provable convergence guarantees, unlike the block coordinate
descent algorithm used to solve (2) [5].

1.1. Contributions

1. We introduce a novel multimodal sparse DL algorithm
based on a Gaussian Scale Mixture (GSM) prior on the
sparse codes. The Bayesian formulation allows us to
force the support of the sparse codes for each modal-
ity to be the same while allowing the coefficients to be
different.

2. We provide a learning procedure for our model and pro-
vide a convergence guarantee. We also address signifi-
cant practical challenges associated with the procedure.

3. We show synthetic data experimental results confirm-
ing that the proposed approach is able to leverage in-
formation from a clean modality to learn a better dic-
tionary for a noisier one.

4. We apply our approach to a multimodal data classifi-
cation task and show that the proposed method outper-
forms the algorithms tested.

2. SPARSE BAYESIAN MULTIMODAL DICTIONARY
LEARNING

We begin by specifying the multimodal signal model. Let yj
and xj be random variables representing yij and xij , respec-
tively. The signal model is then given by yj = Djxj + vj ,

where vj ∼ N(vj ; 0, σ2
j I). Note that the noise variance is al-

lowed to vary among data modalities. In order to encourage
xij to be sparse, we assume a GSM prior on each element of
xj [16][17][21][22], such that

p(xj |γ) =

M∏
m=1

N(xj [m]; 0,γ[m])

where xj [m] denotes the m’th element of the random vector
xj and the choice of p(γ[m]) determines the marginal density
of xj [m]. The key is that γ is shared by the sparse codes for
each modality, encoding our prior knowledge that the sparse
codes share the same support while retaining the freedom to
have different coefficient values. This model is equivalent to
the one used in [23][18][5], although {Dj}Jj=1 is assumed
known there.

We adopt an empirical Bayesian strategy and seek to
jointly estimate θ = {{Dj}Jj=1, {γi}Li=1}, which is done by
maximizing the data log-likelihood given θ:

θ∗ = arg max
θ

log p({yij}
L,J
i=1,j=1|θ). (3)

In order to maximize (3), we employ the Expectation-
Maximization (EM) algorithm [17], where we consider
{{yij}

L,J
i=1,j=1, {xij}

L,J
i=1,j=1, θ} as the complete data and

{xij}
L,J
i=1,j=1 as the latent data. In the E-step, we compute

Q(θ, θt), given by the expected value of the complete data
under the posterior of the latent data given the observa-
tions and θt, the estimate of θ at iteration t. We assume
non-informative priors on γi[m],∀i,m [16], and Dj ,∀j
[15]. The posterior needed to compute Q(θ, θt) is given by
p(xj |yij , θ) = N(xij ;µ

i
j ,Σ

i
j), where

Σi
j = Γi − ΓiDT

j

(
σ2
j I +DjΓ

iDT
j

)−1

DjΓ
i (4)

µij = σ−2
j Σi

jD
T
j y

i
j (5)

and Γi = diag(γi). In the M-step, we maximize Q(θ, θt)
with respect to θ, leading to the update rules

(
γi[m]

)t+1
=

1

J

 J∑
j=1

Σi
j [m,m] + µij [m]2

 (6)

Dt+1
j = Y jU

T
j

(
U jU

T
j +

L∑
i=1

Σi
j

)−1

(7)

where Y j =
[
y1
j · · · yLj

]
andU j =

[
µ1
j · · ·µLj

]
. Note

that the update rules given in (6) and (7) are equivalent to
those shown in [15] for J = 1. Unlike[5][14][10], our ap-
proach is not a block-coordinate descent algorithm.

2.1. Simulated Annealing of σ2
j

Although the parameters {σj}Jj=1 can be readily estimated
within the EM framework above, there are serious identifia-
bility issues even in the unimodal case when the dictionary
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is known [19]. To motivate our approach, we consider the
maximum a-posteriori (MAP) estimate of xij given yij :(

xij
)MAP

= arg min
xi

j

‖yij −Djx
i
j‖2 − 2σ2

j log p(xij).

This shows that σ2
j can be thought of as a regularization pa-

rameter which controls the trade-off between sparsity and sig-
nal reconstruction error. We propose to adopt an annealing
strategy for σ2

j , summarized by

σt+1
j = ασtj , α < 1. (8)

The motivation for annealing σ2
j is that the quality of {Dj}Jj=1

increases with t, so seeking sparse xij for small t does not
make sense and can force the EM algorithm to converge to a
poor local minimum.

2.2. Complete Algorithm Specification

The complete algorithm is summarized in Alg. 1. In practice,
at each iteration, the dictionaries {Dj}Jj=1 are normalized to
unit `2 column norm in order to prevent scaling instabilities.

Algorithm 1 Multimodal DL algorithm

Require: {yij}
L,J
i=1,j=1, {σ0

j }Jj=1, α, {σminj }Jj=1

1: while not converged do
2: Update {Σi

j}
L,J
i=1,j=1 using (4)

3: Update {µij}
L,J
i=1,j=1 using(5)

4: Update {γi}Li=1 using (6)
5: Update {Dj}Jj=1 using (7)
6: Update σj using (8) unless σj ≤ σminj

7: end while
8: return {Dj}Jj=1

2.3. Analysis

We now provide a valuable theoretical result pertaining to the
proposed approach.

Theorem 1. Algorithm 1 is guaranteed to converge to a sta-
tionary point of (3).

Proof. For fixed σj , Algorithm 1 is guaranteed to converge to
a stationary point of (3) because Q(θ, θt) satisfies the condi-
tions of (Theorem 2 [24]). To extend this result to the case of
varying σj , we note that σj is annealed for a pre-specified, fi-
nite number of iterations, after which Algorithm 1 is executed
until convergence without modifying σj . �

3. RESULTS
3.1. Synthetic Data

In order to validate how well the proposed algorithm is able
to learn unimodal and multimodal dictionaries, we conducted
a series of experiments on synthetic data. We adopt the ex-
perimental setup given in [14] and begin by generating the

elements of the ground-truth dictionaries D∗j ∈ R20×50 by
sampling from a N(0, 1) distribution and scaling the result-
ing matrices to have unit `2 column norm. We then generate
xij by randomly selecting s = 5 indices and generating the
non-zero entries by drawing samples from a N(0, 1) distri-
bution. The supports of {xij}Jj=1 are constrained to be the
same, while the coefficients themselves are not. Finally, vij
is generated by drawing samples from a N(0, 1) distribution
and scaling the resulting vector in order to achieve a spec-
ified Signal-to-Noise Ratio (SNR). We use L = 1000 and
J = 2 and simulate a dataset consisting of a noisy modal-
ity with 10 dB SNR and a clean modality with 30 dB SNR.
In order to measure the performance of the recovered dictio-
naries {D̂j}Jj=1, we compute the probability of successfully
recovering {D∗j}Jj=1, given by

Lj =
1

M

M∑
m=1

1

 max
1≤k≤M

|〈dmj , d̂
k

j 〉|

‖dmj ‖22‖d̂
k

j ‖22
> 0.99


where 〈·, ·〉 denotes an inner product and 1 [·] the indicator
function. The experiment is performed 50 times and averaged
results are reported. We compare the proposed method with
commonly used sparse DL algorithms, including the `1-norm
based method for solving (1) [10], K-SVD [8], and J0DL.
The regularization parameters λ in (1) and {λj}Jj=1 in (2)
were selected by a grid search and both K-SVD and J0DL
were given the true sparsity parameter s. For multimodal DL,
K-SVD was given data in the format {ỹi}Li=1. J0DL was im-
plemented in a block-coordinate descent fashion where the
sparse coding step was computed using DC-SOMP and the
dictionary update step was done using the same procedure as
in K-SVD [5]. All algorithms were run for 1000 iterations.

The synthetic data results are shown in Fig. 1. For uni-
modal data, all of the algorithms recover the true dictionary
almost perfectly when the SNR = 30 dB, with the exception
of J0DL and K-SVD. On the other hand, for SNR = 10 dB,
all of the tested algorithms perform poorly, with the proposed
method outperforming all of the tested methods.

In the multimodal scenario, the proposed method clearly
distinguishes itself from the other methods tested. Not only
does the proposed method (almost perfectly) recover the
clean data dictionary, but it achieves an accuracy of 93.5% on
the noisy data dictionary, which is 28.8% better (in absolute
terms) than the next best method. The performance of the
proposed method is even more impressive considering that
the `1 and K-SVD algorithms were not able to attain more
than 0.2% accuracy in recovering either the clean or noisy
dictionaries. J0DL was able to capture some of the multi-
modal information in learning the noisy dictionary, but the
noisy dictionary accuracy only reaches 65.1%.

3.2. Wikipedia Dataset Multimodal Classification

The Wikipedia dataset [25] consists of 2,866 Wikipedia ar-
ticles grouped into 10 categories (art, history, biology, etc.),
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Method
DL scheme Feature Type Proposed J0DL `1 [2] K-SVD

Unimodal
Images 24.24 25.53 24.96 —

Text 70.27 69.26 70.42 —

Multimodal

Images 29.58 23.23 25.11 25.69
Text 69.99 66.09 68.83 66.52

Joint sparse coding 71.00 62.63 66.52 54.55

Table 1: Wikipedia dataset classification accuracy results (%).

with each article represented as an image with corresponding
text. In order to facilitate document classification, we use the
10-dimensional Latent Dirichlet Allocation (LDA) [26] text
features and 128-dimensional SIFT [27] image features pro-
vided by the authors of [25]. This dataset provides a good
testbed for multimodal learning algorithms because the text
modality is much less noisy than the image modality and can
be leveraged to obtain better representations of images.

We adopt the experimental setup of [2] and split the
dataset into a training set, consisting of about 75% of the
documents, and testing set, consisting of the rest of the docu-
ments. The training data is used to learn dictionaries for the
text and image modalities. To classify a given test document,
the learned dictionaries are used to extract sparse codes for
the text and image modalities. The extracted sparse codes are
then used as inputs to a one-vs-all support vector machine
(SVM) [28] classifier (trained on the training data sparse
codes) with radial basis function kernel. The tuning parame-
ters of the classifier are estimated using cross-validation.

The classification results are reported in Table 1. In the
unimodal setting, the dictionaries for text and images are
learned independently. During testing, a given document is
classified using either the image or text sparse code. The
parameters λ in (1) and {λj}Jj=1 in (2) were selected by grid
search. We use s = 10 for the `0 based methods. Note that
K-SVD is equivalent to J0DL in this scenario, so K-SVD
results are omitted. As expected, all of the tested algorithms
perform nearly identically. In the multimodal setting, the text
and image dictionaries are learned jointly. At test time, the
learned dictionaries are used to extract the image and text
sparse codes, or to extract both jointly (i.e. by using the same
procedure as the one used to learn the dictionaries, but with
the dictionaries fixed). The proposed method outperforms the
other tested methods in the multimodal scenario. Moreover,
the proposed method is able to leverage the text modality
to learn a higher quality image dictionary and achieve an
improvement of 5.34% over the unimodal case in classifying
images, with the other methods showing only slight improve-
ment or performance loss. As in the synthetic data case,
the proposed method maintains its performance on the clean
(text) modality, whereas the other algorithms show a drop in
performance. The best overall performance is achieved by
the proposed method in the joint sparse coding setting.

Fig. 1: Synthetic data results with one standard deviation er-
ror bars.

4. CONCLUSION
We have detailed a novel sparse multimodal DL algorithm.
Our approach incorporates the main features of existing meth-
ods, which establish a correspondence between the elements
of the dictionaries for each modality, while addressing the ma-
jor drawbacks of previous algorithms. Our method enjoys the
theoretical guarantees and superior sparse recovery rates as-
sociated with the sparse Bayesian learning framework.
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